結果
問題 | No.2916 累進コスト最小化 |
ユーザー | deuteridayo |
提出日時 | 2024-10-04 23:36:13 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,429 bytes |
コンパイル時間 | 5,501 ms |
コンパイル使用メモリ | 317,660 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-04 23:36:28 |
合計ジャッジ時間 | 13,654 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 3 ms
6,820 KB |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 3 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,820 KB |
testcase_23 | AC | 629 ms
6,820 KB |
testcase_24 | AC | 656 ms
6,816 KB |
testcase_25 | AC | 786 ms
6,820 KB |
testcase_26 | AC | 799 ms
6,816 KB |
testcase_27 | AC | 743 ms
6,816 KB |
testcase_28 | AC | 803 ms
6,816 KB |
testcase_29 | AC | 537 ms
6,820 KB |
testcase_30 | AC | 667 ms
6,816 KB |
testcase_31 | AC | 892 ms
6,816 KB |
testcase_32 | AC | 908 ms
6,816 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; struct edge; using graph = vector<vector<edge>>; #define endl '\n' constexpr int INF = 1<<30; constexpr lint INF64 = 1LL<<61; constexpr lint mod107 = 1e9+7; using mint107 = modint1000000007; constexpr long mod = 998244353; using mint = modint998244353; lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}} lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}} lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;} lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;} double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));} lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); } string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}} lint Kai[20000001]; bool firstCallnCr = true; lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;} #define rep(i, n) for(int i = 0; i < n; i++) #define repp(i, x, y) for(int i = x; i < y; i++) #define rrep(i, x) for(int i = x-1; i >= 0; i--) #define vec vector #define pb push_back #define eb emplace_back #define se second #define fi first #define al(x) x.begin(),x.end() #define ral(x) x.rbegin(),x.rend() unsigned long Rand() { static random_device seed; static mt19937_64 engine(seed()); return engine(); } struct Point { lint x, y; int quad; Point(lint X, lint Y) { x = X; y = Y; quad = getQuad(); } int getQuad() { if(x >= 0) { if(y >= 0) return 1; else return 4; } else { if(y >= 0) return 2; else return 3; } } }; bool operator<(const Point &left, const Point &right) { if(left.quad == right.quad) { return left.y * right.x < left.x * right.y; } else { return left.quad < right.quad; } } struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) {lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { llint L = left.upper; L *= right.lower; llint R = right.upper; R *= left.lower; return L < R; } lint extGCD(lint a, lint b, lint &x, lint &y) { if (b == 0) { x = 1; y = 0; return a; } lint d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } struct edge{ lint to; lint r; lint w; }; vec<vec<lint>>R(10, vec<lint>(10, -1)); vec<vec<lint>>W(10, vec<lint>(10, -1)); int n, m, c; int main(){ cin >> n >> m >> c; rep(k, m) { int i, j, r, w; cin >> i >> j >> r >> w; i--;j--; R[i][j] = r; R[j][i] = r; W[i][j] = w; W[j][i] = w; } for(lint C = 1; C <= c; C++) { vec<vec<lint>>dist(n, vec<lint>(n, -1)); dist[0][0] = C; rep(k, n) { rep(i, n) { rep(j, n) { lint D = dist[i][k]; if(R[k][j] == -1) continue; dist[i][j] = max(dist[i][j], D - D/R[k][j] - W[k][j]); } } } cout << dist[0][n-1] << endl; } }