結果

問題 No.2916 累進コスト最小化
ユーザー ecotteaecottea
提出日時 2024-10-05 02:00:45
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,009 ms / 3,500 ms
コード長 10,491 bytes
コンパイル時間 7,340 ms
コンパイル使用メモリ 321,576 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-05 02:02:40
合計ジャッジ時間 112,489 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3,009 ms
6,816 KB
testcase_01 AC 3,001 ms
6,816 KB
testcase_02 AC 3,002 ms
6,820 KB
testcase_03 AC 3,002 ms
6,816 KB
testcase_04 AC 3,002 ms
6,820 KB
testcase_05 AC 3,001 ms
6,820 KB
testcase_06 AC 3,002 ms
6,820 KB
testcase_07 AC 3,002 ms
6,820 KB
testcase_08 AC 3,001 ms
6,820 KB
testcase_09 AC 3,001 ms
6,820 KB
testcase_10 AC 3,002 ms
6,816 KB
testcase_11 AC 3,002 ms
6,816 KB
testcase_12 AC 3,002 ms
6,816 KB
testcase_13 AC 3,001 ms
6,816 KB
testcase_14 AC 3,002 ms
6,820 KB
testcase_15 AC 3,001 ms
6,816 KB
testcase_16 AC 3,002 ms
6,816 KB
testcase_17 AC 3,001 ms
6,820 KB
testcase_18 AC 3,002 ms
6,816 KB
testcase_19 AC 3,001 ms
6,820 KB
testcase_20 AC 3,002 ms
6,816 KB
testcase_21 AC 3,001 ms
6,820 KB
testcase_22 AC 3,002 ms
6,816 KB
testcase_23 AC 3,001 ms
6,816 KB
testcase_24 AC 3,007 ms
6,816 KB
testcase_25 AC 3,007 ms
6,816 KB
testcase_26 AC 3,009 ms
6,820 KB
testcase_27 AC 3,009 ms
6,820 KB
testcase_28 AC 3,009 ms
6,820 KB
testcase_29 AC 3,008 ms
6,816 KB
testcase_30 AC 3,009 ms
6,820 KB
testcase_31 AC 3,009 ms
6,816 KB
testcase_32 AC 3,009 ms
6,816 KB
testcase_33 AC 3,007 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")


#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<100>;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【重み付きグラフの辺】(の改変)
/*
* to : 行き先の頂点番号
* cost : 辺の重み
*/
struct WEdge {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	int from = -1;
	int to = -1; // 行き先の頂点番号
	int r = -1;
	int w = -1;

	WEdge() {}
	WEdge(int from, int to, int r, int w) : from(from), to(to), r(r), w(w) {}

	// プレーングラフで呼ばれたとき用
	operator int() const { return to; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const WEdge& e) {
		os << '(' << e.to << ',' << e.r << "," << e.w << ')';
		return os;
	}
#endif
};


//【重み付きグラフ】(の改変)
/*
* WGraph g
* g[v] : 頂点 v から出る辺を並べたリスト
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;


//【重み付きグラフの入力】O(n + m)(の改変)
/*
* (始点, 終点, 重み) の組からなる入力を受け取り,n 頂点 m 辺の重み付きグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* directed : 有向グラフか(省略すれば false)
* zero_indexed : 入力が 0-indexed か(省略すれば false)
*/
WGraph read_WGraph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	WGraph g(n);
	if (m == -1) m = n - 1;

	rep(j, m) {
		int u, v; int r, w;
		cin >> u >> v >> r >> w;

		if (!zero_indexed) { --u; --v; }

		g[u].push_back({ u, v, r, w });
		if (!directed && u != v) g[v].push_back({ v, u, r, w });
	}

	return g;
}


//【ダイクストラ法(任意コスト)】O(n + m log n)(の改変)
/*
* 参照付きグラフ g に対し st から各頂点への最小コスト(到達不能なら INFL)を格納したリストを返す.
* 初期コストは ini_cost で,コスト x の状態で辺 e を通ると,通過後のコストは f(e, x) になるとする.
*
* 制約:
*	f(x) は x について広義単調増加(途中であえてコストを増やすメリットがない)
*	f(x) ≧ x(辺を通ることでコストが減ることがない)
*/
template <class G, class FUNC, class T>
vector<WEdge> dijkstra(const G& g, int st, int gl, const FUNC& f, T ini_cost) {
	// 参考 : https://miscalc.hatenablog.com/entry/2022/10/10/115348
	// verify : https://atcoder.jp/contests/abc342/tasks/abc342_e

	int n = sz(g);
	vector<T> cost(n, T(INFL)); // st からのコスト
	cost[st] = ini_cost;

	vector<WEdge> pe(n);

	// 組 (st からのコスト, 頂点番号) を入れる優先度付きキュー
	priority_queue_rev<pair<T, int>> q;
	q.push({ ini_cost, st });

	while (!q.empty()) {
		auto [c, s] = q.top(); q.pop();

		// ゴールに辿り着いたなら終了
		if (s == gl) break;

		// すでにより小さいコストに更新されていたなら何もしない(忘れると O(n^2))
		if (cost[s] < c) continue;

		// より小さいコストで辿り着けるならコストを更新し,その先も探索する.
		repe(e, g[s]) {
			T nc = f(e, c);
			if (chmin(cost[e.to], nc)) {
				pe[e.to] = e;
				q.push({ nc, e.to });
			}
		}
	}

	// st から gl まで到達不能の場合
	if (cost[gl] == T(INFL)) return vector<WEdge>();

	vector<WEdge> es;

	int t = gl;
	while (t != st) {
		es.push_back(pe[t]);
		t = pe[t].from;
	}
	reverse(all(es));

	return es;

	/* f の定義の雛形
	auto f = [&](const WEdge& e, ll cost) {
		return cost + e.cost;
	};
	*/
}


// C のときの最善の経路がいつでも最善とは限らない.てかサンプル3がそれだった.
void WA() {
	int n, m; int C;
	cin >> n >> m >> C;

	auto g = read_WGraph(n, m);

	auto f = [&](const WEdge& e, ll cost) {
		cost *= -1;
		cost -= cost / e.r + e.w;
		chmax(cost, -1LL);
		cost *= -1;

		return cost;
	};

	auto es = dijkstra(g, 0, n - 1, f, -(ll)C);
	dump(es);

	if (es.empty()) {
		rep(hoge, C) cout << -1 << "\n";
		return;
	}

	repi(c0, 1, C) {
		int c = c0;
		repe(e, es) {
			c -= c / e.r + e.w;
			if (c < 0) {
				c = -1;
				break;
			}
		}
		cout << c << "\n";
	}
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	auto start = chrono::system_clock::now();

	int n, m; int C;
	cin >> n >> m >> C;

	auto g = read_WGraph(n, m);

	vi res(C + 1, -1);

	auto f = [&](const WEdge& e, double cost) {
		cost *= -1;
		cost -= cost / e.r + e.w;
		chmax(cost, -1.);
		cost *= -1;

		return cost;
	};

	mt19937_64 mt((int)time(NULL));
	uniform_real_distribution<double> rnd(1, C);

	while (1) {
		auto es = dijkstra(g, 0, n - 1, f, -rnd(mt));
		dump(es);

		if (!es.empty()) {
			repi(c0, 1, C) {
				int c = c0;
				repe(e, es) {
					c -= c / e.r + e.w;
					if (c < 0) {
						c = -1;
						break;
					}
				}
				
				chmax(res[c0], c);
			}
		}

		auto now = chrono::system_clock::now();
		auto msec = chrono::duration_cast<chrono::milliseconds>(now - start).count();
		if (msec >= 3000) break;
	}

	repi(c0, 1, C) {
		cout << res[c0] << "\n";
	}
}
0