結果
問題 | No.2260 Adic Sum |
ユーザー | AC2K |
提出日時 | 2024-10-05 09:08:45 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 292 ms / 2,000 ms |
コード長 | 22,334 bytes |
コンパイル時間 | 4,645 ms |
コンパイル使用メモリ | 251,884 KB |
実行使用メモリ | 8,916 KB |
最終ジャッジ日時 | 2024-10-05 09:08:54 |
合計ジャッジ時間 | 7,204 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 1 ms
6,820 KB |
testcase_07 | AC | 1 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 3 ms
6,816 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 10 ms
6,820 KB |
testcase_15 | AC | 14 ms
6,820 KB |
testcase_16 | AC | 8 ms
6,816 KB |
testcase_17 | AC | 15 ms
6,820 KB |
testcase_18 | AC | 176 ms
8,752 KB |
testcase_19 | AC | 194 ms
8,912 KB |
testcase_20 | AC | 123 ms
8,900 KB |
testcase_21 | AC | 148 ms
8,904 KB |
testcase_22 | AC | 123 ms
8,896 KB |
testcase_23 | AC | 67 ms
8,332 KB |
testcase_24 | AC | 175 ms
8,916 KB |
testcase_25 | AC | 25 ms
8,184 KB |
testcase_26 | AC | 25 ms
8,172 KB |
testcase_27 | AC | 27 ms
8,320 KB |
testcase_28 | AC | 26 ms
8,180 KB |
testcase_29 | AC | 26 ms
8,312 KB |
testcase_30 | AC | 20 ms
6,816 KB |
testcase_31 | AC | 67 ms
6,820 KB |
testcase_32 | AC | 67 ms
6,824 KB |
testcase_33 | AC | 18 ms
8,276 KB |
testcase_34 | AC | 57 ms
8,212 KB |
testcase_35 | AC | 292 ms
8,788 KB |
ソースコード
#line 1 "Library/src/debug.hpp" #ifdef ONLINE_JUDGE #define debug(x) void(0) #else #define _GLIBCXX_DEBUG #define debug(x) std::cerr << __LINE__ << " : " << #x << " = " << (x) << std::endl #endif /** * @brief Debugger */ #line 2 "Library/src/math/rho.hpp" #include <algorithm> #include <vector> #line 2 "Library/src/math/gcd.hpp" #include <cassert> #include <cmath> #include <tuple> namespace kyopro { template <typename T> constexpr inline T _gcd(T a, T b) noexcept { assert(a >= 0 && b >= 0); if (a == 0 || b == 0) return a + b; int d = std::min<T>(__builtin_ctzll(a), __builtin_ctzll(b)); a >>= __builtin_ctzll(a), b >>= __builtin_ctzll(b); while (a != b) { if (!a || !b) { return a + b; } if (a >= b) { a -= b; a >>= __builtin_ctzll(a); } else { b -= a; b >>= __builtin_ctzll(b); } } return a << d; } template <typename T> constexpr inline T ext_gcd(T a, T b, T& x, T& y) noexcept { x = 1, y = 0; T nx = 0, ny = 1; while (b) { T q = a / b; std::tie(a, b) = std::pair<T, T>{b, a % b}; std::tie(x, nx) = std::pair<T, T>{nx, x - nx * q}; std::tie(y, ny) = std::pair<T, T>{ny, y - ny * q}; } return a; } }; // namespace kyopro /** * @brief gcd */ #line 3 "Library/src/math/dynamic_modint.hpp" #include <iostream> #line 2 "Library/src/internal/barrett.hpp" #include <cstdint> namespace kyopro { namespace internal { class barrett { using u32 = std::uint32_t; using u64 = std::uint64_t; using u128 = __uint128_t; u32 m; u64 im; public: constexpr barrett() : m(0), im(0) {} constexpr barrett(u32 m) : m(m), im(static_cast<u64>(-1) / m + 1) {} constexpr u32 get_mod() const { return m; } constexpr u32 reduce(u32 a) const { return mul(1, a); } constexpr u32 mul(u32 a, u32 b) const { u64 z = (u64)a * b; u64 x = (u64)(((u128)(z)*im) >> 64); u64 y = x * m; return (u32)(z - y + (z < y ? m : 0)); } }; }; // namespace internal }; // namespace kyopro /** * @brief Barrett Reduction * @see https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp */ #line 3 "Library/src/internal/montgomery.hpp" #include <limits> #include <numeric> #line 5 "Library/src/internal/type_traits.hpp" #include <typeinfo> #line 7 "Library/src/internal/type_traits.hpp" namespace kyopro { namespace internal { template <typename... Args> struct first_enabled {}; template <typename T, typename... Args> struct first_enabled<std::enable_if<true, T>, Args...> { using type = T; }; template <typename T, typename... Args> struct first_enabled<std::enable_if<false, T>, Args...> : first_enabled<Args...> {}; template <typename T, typename... Args> struct first_enabled<T, Args...> { using type = T; }; template <typename... Args> using first_enabled_t = typename first_enabled<Args...>::type; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct int_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::int8_t>, std::enable_if<dgt <= 16, std::int16_t>, std::enable_if<dgt <= 32, std::int32_t>, std::enable_if<dgt <= 64, std::int64_t>, std::enable_if<dgt <= 128, __int128_t>>; }; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct uint_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::uint8_t>, std::enable_if<dgt <= 16, std::uint16_t>, std::enable_if<dgt <= 32, std::uint32_t>, std::enable_if<dgt <= 64, std::uint64_t>, std::enable_if<dgt <= 128, __uint128_t>>; }; template <int dgt> using int_least_t = typename int_least<dgt>::type; template <int dgt> using uint_least_t = typename uint_least<dgt>::type; template <typename T> using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>; template <typename T> using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>; struct modint_base {}; template <typename T> using is_modint = std::is_base_of<modint_base, T>; template <typename T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; // is_integral template <typename T> using is_integral_t = std::enable_if_t<std::is_integral_v<T> || std::is_same_v<T, __int128_t> || std::is_same_v<T, __uint128_t>>; }; // namespace internal }; // namespace kyopro /** * @brief Type Traits * @see https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8 */ #line 6 "Library/src/internal/montgomery.hpp" namespace kyopro { namespace internal { using u32 = uint32_t; using u64 = uint64_t; using i32 = int32_t; using i64 = int64_t; using u128 = __uint128_t; using i128 = __int128_t; template <typename T> class Montgomery { static constexpr int lg = std::numeric_limits<T>::digits; using LargeT = internal::double_size_uint_t<T>; T mod, r, r2, minv; T inv() { T t = 0, res = 0; for (int i = 0; i < lg; ++i) { if (~t & 1) { t += mod; res += static_cast<T>(1) << i; } t >>= 1; } return res; } public: Montgomery() = default; constexpr T get_mod() { return mod; } void set_mod(T m) { assert(m); assert(m & 1); mod = m; r = (-static_cast<T>(mod)) % mod; r2 = (-static_cast<LargeT>(mod)) % mod; minv = inv(); } T reduce(LargeT x) const { u64 res = (x + static_cast<LargeT>(static_cast<T>(x) * minv) * mod) >> lg; if (res >= mod) res -= mod; return res; } T generate(LargeT x) { return reduce(x * r2); } T mul(T x, T y) { return reduce((LargeT)x * y); } }; }; // namespace internal }; // namespace kyopro /** * @brief Montgomery Reduction */ #line 6 "Library/src/math/dynamic_modint.hpp" namespace kyopro { template <int id = -1> class barrett_modint : internal::modint_base { using mint = barrett_modint<id>; using u32 = std::uint32_t; using u64 = std::uint64_t; using i32 = std::int32_t; using i64 = std::int64_t; using br = internal::barrett; static br brt; u32 v; public: static void set_mod(u32 mod_) { brt = br(mod_); } public: explicit constexpr barrett_modint() noexcept : v(0) { assert(mod()); } explicit constexpr barrett_modint(i64 v_) noexcept : v() { assert(mod()); if (v_ < 0) v_ = (i64)mod() - v_; v = brt.reduce(v_); } u32 val() const noexcept { return v; } static u32 mod() { return brt.get_mod(); } static mint raw(u32 v) { mint x; x.v = v; return x; } constexpr mint& operator++() noexcept { ++v; if (v == mod()) v = 0; return (*this); } constexpr mint& operator--() noexcept { if (v == 0) v = mod(); --v; return (*this); } constexpr mint operator++(int) noexcept { mint res(*this); ++(*this); return res; } constexpr mint operator--(int) noexcept { mint res(*this); --(*this); return res; } constexpr mint& operator+=(const mint& r) noexcept { v += r.v; if (v >= mod()) v -= mod(); return (*this); } constexpr mint& operator-=(const mint& r) noexcept { v += mod() - r.v; if (v >= mod()) { v -= mod(); } return (*this); } constexpr mint& operator*=(const mint& r) noexcept { v = brt.mul(v, r.v); return (*this); } constexpr mint& operator/=(const mint& r) noexcept { return (*this) *= r.inv(); } friend mint operator+(const mint& lhs, const mint& rhs) noexcept { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) noexcept { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) noexcept { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) noexcept { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) noexcept { return lhs.v == rhs.v; } friend bool operator!=(const mint& lhs, const mint& rhs) noexcept { return lhs.v != rhs.v; } constexpr mint& operator+=(i64 r) noexcept { return (*this) += mint(r); } constexpr mint& operator-=(i64 r) noexcept { return (*this) -= mint(r); } constexpr mint& operator*=(i64 r) noexcept { return (*this) *= mint(r); } friend mint operator+(i64 l, const mint& r) noexcept { return mint(l) += r; } friend mint operator+(const mint& l, i64 r) noexcept { return mint(l) += r; } friend mint operator-(i64 l, const mint& r) noexcept { return mint(l) -= r; } friend mint operator-(const mint& l, i64 r) noexcept { return mint(l) -= r; } friend mint operator*(i64 l, const mint& r) noexcept { return mint(l) *= r; } friend mint operator*(const mint& l, i64 r) noexcept { return mint(l) *= r; } constexpr mint operator+() const noexcept { return *this; } constexpr mint operator-() const noexcept { return mint() - *this; } template <typename T> mint pow(T e) const noexcept { mint res(1), base(*this); while (e) { if (e & 1) { res *= base; } e >>= 1; base *= base; } return res; } constexpr mint inv() const noexcept { return pow(mod() - 2); } }; }; // namespace kyopro template <int id> typename kyopro::barrett_modint<id>::br kyopro::barrett_modint<id>::brt; namespace kyopro { template <typename T, int id = -1> class montgomery_modint : internal::modint_base { using LargeT = internal::double_size_uint_t<T>; static T _mod; static internal::Montgomery<T> mr; public: static void set_mod(T mod_) { mr.set_mod(mod_); _mod = mod_; } static T mod() { return _mod; } private: T v; public: montgomery_modint(T v_ = 0) { assert(_mod); v = mr.generate(v_); } T val() const { return mr.reduce(v); } using mint = montgomery_modint<T, id>; mint& operator+=(const mint& r) { v += r.v; if (v >= mr.get_mod()) { v -= mr.get_mod(); } return (*this); } mint& operator-=(const mint& r) { v += mr.get_mod() - r.v; if (v >= mr.get_mod) { v -= mr.get_mod(); } return (*this); } mint& operator*=(const mint& r) { v = mr.mul(v, r.v); return (*this); } mint operator+(const mint& r) { return mint(*this) += r; } mint operator-(const mint& r) { return mint(*this) -= r; } mint operator*(const mint& r) { return mint(*this) *= r; } mint& operator=(const T& v_) { (*this) = mint(v_); return (*this); } friend std::ostream& operator<<(std::ostream& os, const mint& mt) { os << mt.val(); return os; } friend std::istream& operator>>(std::istream& is, mint& mt) { T v_; is >> v_; mt = v_; return is; } template <typename P> mint pow(P e) const { assert(e >= 0); mint res(1), base(*this); while (e) { if (e & 1) { res *= base; } e >>= 1; base *= base; } return res; } mint inv() const { return pow(mod() - 2); } mint& operator/=(const mint& r) { return (*this) *= r.inv(); } mint operator/(const mint& r) const { return mint(*this) *= r.inv(); } mint& operator/=(T r) { return (*this) /= mint(r); } friend mint operator/(const mint& l, T r) { return mint(l) /= r; } friend mint operator/(T l, const mint& r) { return mint(l) /= r; } }; }; // namespace kyopro template <typename T, int id> T kyopro::montgomery_modint<T, id>::_mod; template <typename T, int id> kyopro::internal::Montgomery<T> kyopro::montgomery_modint<T, id>::mr; /** * @brief Dynamic modint */ #line 3 "Library/src/math/miller.hpp" namespace kyopro { class miller { using i128 = __int128_t; using u128 = __uint128_t; using u64 = std::uint64_t; using u32 = std::uint32_t; template <typename T, typename mint, const int bases[], int length> static constexpr bool miller_rabin(T n) { T d = n - 1; while (~d & 1) { d >>= 1; } const T rev = n - 1; if (mint::mod() != n) { mint::set_mod(n); } for (int i = 0; i < length; ++i) { if (n <= bases[i]) { return true; } T t = d; mint y = mint(bases[i]).pow(t); while (t != n - 1 && y.val() != 1 && y.val() != rev) { y *= y; t <<= 1; } if (y.val() != rev && (~t & 1)) return false; } return true; } // 底 static constexpr int bases_int[3] = {2, 7, 61}; static constexpr int bases_ll[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; public: template <typename T> static constexpr bool is_prime(T n) { if (n < 2) { return false; } else if (n == 2) { return true; } else if (~n & 1) { return false; }; if constexpr (std::numeric_limits<T>::digits < 32) { return miller_rabin<T, montgomery_modint<std::make_unsigned_t<T>>, bases_int, 3>(n); } else { if (n <= 1 << 30) return miller_rabin<T, montgomery_modint<std::make_unsigned_t<T>>, bases_int, 3>(n); else return miller_rabin< T, montgomery_modint<std::make_unsigned_t<T>>, bases_ll, 7>( n); } return false; } }; }; // namespace kyopro /** * @brief Primality Test(MillerRabin素数判定) * @docs docs/math/miller.md */ #line 2 "Library/src/random/xor_shift.hpp" #include <chrono> #line 4 "Library/src/random/xor_shift.hpp" #include <random> namespace kyopro { struct xor_shift32 { uint32_t rng; constexpr explicit xor_shift32(uint32_t seed) : rng(seed) {} explicit xor_shift32() : rng(std::chrono::steady_clock::now().time_since_epoch().count()) {} constexpr uint32_t operator()() { rng ^= rng << 13; rng ^= rng >> 17; rng ^= rng << 5; return rng; } }; struct xor_shift { uint64_t rng; constexpr explicit xor_shift(uint64_t seed) : rng(seed) {} explicit xor_shift() : rng(std::chrono::steady_clock::now().time_since_epoch().count()) {} constexpr uint64_t operator()() { rng ^= rng << 13; rng ^= rng >> 7; rng ^= rng << 17; return rng; } }; }; // namespace kyopro /** * @brief Xor Shift */ #line 7 "Library/src/math/rho.hpp" namespace kyopro { class rho { using i128 = __int128_t; using u128 = __uint128_t; using u64 = uint64_t; using u32 = uint32_t; template <typename T,typename mint> static constexpr T find_factor(T n) { xor_shift32 rng(2023); if (~n & 1uL) { return 2; } if (kyopro::miller::is_prime(n)) { return n; } if (mint::mod() != n) { mint::set_mod(n); } while (1) { T c = rng(); const auto f = [&](mint x) -> mint { return x * x + c; }; mint x = rng(); mint y = f(x); T d = 1; while (d == 1) { d = _gcd<std::make_signed_t<T>>( std::abs((std::make_signed_t<T>)x.val() - (std::make_signed_t<T>)y.val()), n); x = f(x); y = f(f(y)); } if (1 < d && d < n) { return d; } } exit(-1); } template <typename T,typename mint> static std::vector<T> rho_fact(T n) { if (n < 2) { return {}; } if (kyopro::miller::is_prime(n)) { return {n}; } std::vector<T> v; std::vector<T> st{n}; while (!st.empty()) { u64 m = st.back(); if (kyopro::miller::is_prime(m)) { v.emplace_back(m); st.pop_back(); } else { T d = find_factor<T, mint>(m); st.back() /= d; st.emplace_back(d); } } return v; } public: template <typename T> static std::vector<T> factorize(T n) { if (n < 2) { return {}; } if constexpr (std::numeric_limits<T>::digits < 32) { std::vector v = rho_fact<T, montgomery_modint<u32>>(n); std::sort(v.begin(), v.end()); return v; } else { std::vector v = rho_fact<T, montgomery_modint<u64>>(n); std::sort(v.begin(), v.end()); return v; } } template<typename T> static std::vector<std::pair<T, int>> exp_factorize(T n) { std::vector pf = factorize(n); if (pf.empty()) { return {}; } std::vector<std::pair<T, int>> res; res.emplace_back(pf.front(), 1); for (int i = 1; i < (int)pf.size(); i++) { if (res.back().first == pf[i]) { res.back().second++; } else { res.emplace_back(pf[i], 1); } } return res; } template<typename T> static std::vector<T> enumerate_divisor(T n) { std::vector<std::pair<T, int>> pf = rho::exp_factorize(n); std::vector<T> divisor{1}; for (auto [p, e] : pf) { u64 pow = p; int sz = divisor.size(); for (int i = 0; i < e; ++i) { for (int j = 0; j < sz; ++j) divisor.emplace_back(divisor[j] * pow); pow *= p; } } return divisor; } }; }; // namespace kyopro /** * @brief PollardRho素因数分解 * @docs docs/math/rho.md */ #line 2 "Library/src/stream.hpp" #include <ctype.h> #include <stdio.h> #include <string> #line 6 "Library/src/stream.hpp" namespace kyopro { inline void single_read(char& c) { c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_read(T& a) { a = 0; bool is_negative = false; char c = getchar_unlocked(); while (isspace(c)) { c = getchar_unlocked(); } if (c == '-') is_negative = true, c = getchar_unlocked(); while (isdigit(c)) { a = 10 * a + (c - '0'); c = getchar_unlocked(); } if (is_negative) a *= -1; } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_read(T& a) { long long x; single_read(x); a = T(x); } inline void single_read(std::string& str) noexcept { char c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); while (!isspace(c)) { str += c; c = getchar_unlocked(); } } template<typename T> inline void read(T& x) noexcept {single_read(x);} template <typename Head, typename... Tail> inline void read(Head& head, Tail&... tail) noexcept { single_read(head), read(tail...); } inline void single_write(char c) noexcept { putchar_unlocked(c); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_write(T a) noexcept { if (!a) { putchar_unlocked('0'); return; } if constexpr (std::is_signed_v<T>) { if (a < 0) putchar_unlocked('-'), a *= -1; } constexpr int d = std::numeric_limits<T>::digits10; char s[d + 1]; int now = d + 1; while (a) { s[--now] = (char)'0' + a % 10; a /= 10; } while (now <= d) putchar_unlocked(s[now++]); } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_write(T a) noexcept { single_write(a.val()); } inline void single_write(const std::string& str) noexcept { for (auto c : str) { putchar_unlocked(c); } } template <typename T> inline void write(T x) noexcept { single_write(x); } template <typename Head, typename... Tail> inline void write(Head head, Tail... tail) noexcept { single_write(head); putchar_unlocked(' '); write(tail...); } template <typename... Args> inline void put(Args... x) noexcept { write(x...); putchar_unlocked('\n'); } }; // namespace kyopro /** * @brief Fast IO(高速入出力) */ #line 2 "Library/src/template.hpp" #include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (n); i++) #define all(x) std::begin(x), std::end(x) #define popcount(x) __builtin_popcountll(x) using i128 = __int128_t; using ll = long long; using ld = long double; using graph = std::vector<std::vector<int>>; using P = std::pair<int, int>; constexpr int inf = std::numeric_limits<int>::max() / 2; constexpr ll infl = std::numeric_limits<ll>::max() / 2; const long double pi = acosl(-1); constexpr int dx[] = {1, 0, -1, 0, 1, -1, -1, 1, 0}; constexpr int dy[] = {0, 1, 0, -1, 1, 1, -1, -1, 0}; template <typename T1, typename T2> constexpr inline bool chmax(T1& a, T2 b) { return a < b && (a = b, true); } template <typename T1, typename T2> constexpr inline bool chmin(T1& a, T2 b) { return a > b && (a = b, true); } /** * @brief Template */ #line 5 "a.cpp" using namespace std; using namespace kyopro; int main() { int n, p; read(n, p); vector<int> a(n); rep(i, n) read(a[i]); ll ans = 0; for (ll q = p; q <= (int)1e9; q *= p) { unordered_map<int, int> rem; rep(i, n)++ rem[a[i] % q]; for (auto [r, c] : rem) ans += ll(c) * (c - 1) / 2; } put(ans); }