結果
| 問題 |
No.2915 辺更新価値最大化
|
| コンテスト | |
| ユーザー |
Tatsu_mr
|
| 提出日時 | 2024-10-05 20:34:20 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 199 ms / 2,000 ms |
| コード長 | 4,403 bytes |
| コンパイル時間 | 3,596 ms |
| コンパイル使用メモリ | 266,668 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-05 20:34:28 |
| 合計ジャッジ時間 | 7,038 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 28 |
ソースコード
#include <bits/stdc++.h>
#define rep(i, n) for(long long i = 0; i < n; i++)
#define ALL(v) (v).begin(), (v).end()
#define rALL(v) (v).rbegin(), (v).rend()
using namespace std;
using lint = long long;
template <class T>
struct Edge {
int from, to;
T cost;
int idx;
Edge() {}
Edge(int to_) : to(to_) {}
Edge(int to_, T cost_) : to(to_), cost(cost_) {}
Edge(int from_, int to_, int idx_) : from(from_), to(to_), idx(idx_) {}
Edge(int from_, int to_, T cost_, int idx_) : from(from_), to(to_), cost(cost_), idx(idx_) {}
};
template <class T> using Graph = vector<vector<Edge<T>>>;
using graph = Graph<long long>;
using edge = Edge<long long>;
#define add emplace_back
vector<long long> BellmanFord(graph g, int s) {
int n = g.size();
long long INF = 1000000000000000000;
vector<long long> dist(n, INF);
vector<bool> nega(n, false);
dist[s] = 0;
for (int step = 0; step < n - 1; step++) {
bool update = false;
for (int u = 0; u < n; u++) {
if (dist[u] == INF) {
continue;
}
for (auto e : g[u]) {
int v = e.to;
long long w = e.cost;
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
update = true;
}
}
}
if (!update) {
break;
}
}
for (int step = 0; step < n; step++) {
for (int u = 0; u < n; u++) {
if (dist[u] == INF) {
continue;
}
for (auto e : g[u]) {
int v = e.to;
long long w = e.cost;
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
nega[v] = true;
}
if (nega[u]) {
nega[v] = true;
}
}
}
}
for (int v = 0; v < n; v++) {
if (nega[v]) {
dist[v] = -INF;
}
}
return dist;
}
struct Dijkstra {
private:
graph g;
int n, s;
vector<long long> d;
vector<edge> prev;
vector<bool> visit;
priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> pq;
public:
Dijkstra(graph g_, int s_) : g(g_), n(g.size()), s(s_), d(n, 1000000000000000000), prev(n), visit(n, false) {
d[s] = 0LL;
pq.emplace(d[s], s);
while (!pq.empty()) {
int v = pq.top().second;
pq.pop();
if (visit[v]) {
continue;
}
visit[v] = true;
for (auto e : g[v]) {
int nv = e.to;
long long nc = e.cost;
if (d[nv] > d[v] + nc) {
d[nv] = d[v] + nc;
prev[nv] = e;
pq.emplace(d[nv], nv);
}
}
}
}
vector<long long> dists() {
return d;
}
long long dist(int t) {
return d[t];
}
vector<edge> route(int t) {
if (s == t || d[t] == 1000000000000000000) {
return {};
}
vector<edge> res;
int cur = t;
while (cur != s) {
res.emplace_back(prev[cur]);
cur = prev[cur].from;
}
reverse(res.begin(), res.end());
return res;
}
};
int main() {
int n, m, q;
cin >> n >> m >> q;
graph g(n);
vector<edge> es;
rep(i, m) {
int u, v;
lint w;
cin >> u >> v >> w;
u--;
v--;
w *= -1LL;
g[u].add(v, w);
es.emplace_back(u, v, w, i);
}
auto p = BellmanFord(g, 0);
rep(i, n) {
p[i] *= -1LL;
}
vector<int> exist(m, 1);
while (q--) {
int j;
cin >> j;
j--;
exist[j] ^= 1;
graph gg(n);
rep(i, m) {
if (exist[i] == 1) {
auto e = es[i];
int u = e.from, v = e.to;
lint w = e.cost;
w -= p[u] - p[v];
gg[u].add(v, w);
}
}
lint ans = Dijkstra(gg, 0).dist(n - 1);
if (ans == 1000000000000000000) {
cout << "NaN" << endl;
} else {
ans -= p[n - 1];
cout << -ans << endl;
}
}
}
Tatsu_mr