結果

問題 No.2917 二重木
ユーザー ecotteaecottea
提出日時 2024-10-05 20:50:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 3,000 ms
コード長 8,438 bytes
コンパイル時間 4,624 ms
コンパイル使用メモリ 266,392 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-05 20:50:57
合計ジャッジ時間 5,490 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 1 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 3 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 3 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 3 ms
5,248 KB
testcase_29 AC 2 ms
5,248 KB
testcase_30 AC 3 ms
5,248 KB
testcase_31 AC 2 ms
5,248 KB
testcase_32 AC 2 ms
5,248 KB
testcase_33 AC 2 ms
5,248 KB
testcase_34 AC 3 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
//using mint = modint998244353;
//using mint = static_modint<100>;
using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【階乗など(法が小さな素数)】
/*
* Factorial_small_prime_mod(int p, ll N = INFL) : O(min(N, p))
*	素数 p を法として,N! まで計算可能として初期化する.
*
* int fact(ll n) : O(log n)
*	n! mod p を返す.
*
* int bin(ll n, ll r) : O(log n + log p)
*	nCr mod p を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] mod p を返す.(n = Σrs)
*/
struct Factorial_small_prime_mod {
	int p;

	// 階乗の値を保持するテーブル
	using mint_p = dynamic_modint<5362894>;
	vector<mint_p> fac;

	// (p-1)! までの階乗を法を p として前計算しておく.
	Factorial_small_prime_mod(int p, ll n_max = INFL) : p(p) {
		// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod

		mint_p::set_mod(p);
		int len = (p <= n_max ? p : (int)n_max + 1);
		fac.resize(len);
		fac[0] = 1;
		repi(i, 1, len - 1) fac[i] = fac[i - 1] * i;
	}
	Factorial_small_prime_mod() : p(0) {}

	pair<ll, mint_p> factorial_qr(ll n) const {
		ll pow = 0; mint_p mod = 1;

		// ルジャンドルの公式を用いて pow = ord_p(n!) を求めるついでに,
		// ウィルソンの定理 (p-1)! = -1 (mod p) を利用して mod も求める.
		while (n > 0) {
			ll q = n / p;
			int r = (int)(n % p);

			pow += q;
			mod *= fac[r] * (q % 2 ? -1 : 1);

			n /= p;
		}

		return { pow, mod };
	}

	// n! mod p を返す.
	int fact(ll n) const {
		// n が p 以上なら明らかに p の倍数
		if (n >= (ll)p) return 0;

		// そうでなければ n! mod p を返す.
		return factorial_qr(n).second.val();
	}

	// 二項係数 nCr mod p を返す.
	int bin(ll n, ll r) const {
		// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod

		if (r < 0 || n - r < 0) return 0;

		// n, r, n-r それぞれの pow および mod を得る.
		auto fac_n = factorial_qr(n);
		auto fac_r = factorial_qr(r);
		auto fac_nr = factorial_qr(n - r);

		// pow は加減,mod は乗除して結果を得る.
		ll pow = fac_n.first - (fac_r.first + fac_nr.first);
		if (pow > 0) return 0;

		mint_p mod = fac_n.second / (fac_r.second * fac_nr.second);
		return mod.val();
	}

	// 多項係数 nC[rs] を返す.
	int mul(const vi& rs) const {
		if (*min_element(all(rs)) < 0) return 0;
		ll n = accumulate(all(rs), 0);

		auto num = factorial_qr(n);
		ll dnm_pow = 0; mint_p dnm_mod = 1;
		repe(r, rs) {
			auto dnm = factorial_qr(r);
			dnm_pow += dnm.first, dnm_mod *= dnm.second;
		}

		ll pow = num.first - dnm_pow;
		if (pow > 0) return 0;

		mint_p mod = num.second / dnm_mod;
		return mod.val();
	}
};


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, p;
	cin >> n >> p;

	mint::set_mod(p);

	Factorial_small_prime_mod fm(p, n);

	mint res = 0;
	repi(k, 1, n) {
		// どの k 頂点を二重点にするか
		mint c = fm.bin(n, k);

		// k 頂点をどのように木に組むか
		c *= (k == 1 ? 1 : mint(k).pow(k - 2));

		// https://37zigen.com/prufer-code/ の問題 4
		int m = k - 1;
		c *= (n - m - 2 == -1 ? 1 : mint(n).pow(n - m - 2) * k);

		res += c;
	}

	EXIT(res);
}
0