結果
| 問題 |
No.705 ゴミ拾い Hard
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2024-10-06 15:01:53 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 114 ms / 1,500 ms |
| コード長 | 3,559 bytes |
| コンパイル時間 | 1,511 ms |
| コンパイル使用メモリ | 102,784 KB |
| 実行使用メモリ | 10,304 KB |
| 最終ジャッジ日時 | 2024-10-06 15:01:59 |
| 合計ジャッジ時間 | 5,048 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 40 |
ソースコード
#line 1 "other_algorithms/test/monge_shortest_path.yuki705.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/705"
#line 2 "other_algorithms/monge_shortest_path.hpp"
#include <cassert>
#include <vector>
// Shortest path of Monge-weighted graph
// Variant of LARSCH Algorithm: https://noshi91.hatenablog.com/entry/2023/02/18/005856
// Complexity: O(n log n)
//
// Given a directed graph with n vertices and weighted edges
// (w(i, j) = cost_callback(i, j) (i < j)),
// this class calculates the shortest path from vertex 0 to all other vertices.
template <class Cost> struct monge_shortest_path {
std::vector<Cost> dist; // dist[i] = shortest distance from 0 to i
std::vector<int> amin; // amin[i] = previous vertex of i in the shortest path
template <class F> void _check(int i, int k, F cost_callback) {
if (i <= k) return;
if (Cost c = dist[k] + cost_callback(k, i); c < dist[i]) dist[i] = c, amin[i] = k;
}
template <class F> void _rec_solve(int l, int r, F cost_callback) {
if (r - l == 1) return;
const int m = (l + r) / 2;
for (int k = amin[l]; k <= amin[r]; ++k) _check(m, k, cost_callback);
_rec_solve(l, m, cost_callback);
for (int k = l + 1; k <= m; ++k) _check(r, k, cost_callback);
_rec_solve(m, r, cost_callback);
}
template <class F> Cost solve(int n, F cost_callback) {
assert(n > 0);
dist.resize(n);
amin.assign(n, 0);
dist[0] = Cost();
for (int i = 1; i < n; ++i) dist[i] = cost_callback(0, i);
_rec_solve(0, n - 1, cost_callback);
return dist.back();
}
template <class F> int num_edges() const {
int ret = 0;
for (int c = (int)amin.size() - 1; c >= 0; c = amin[c]) ++ret;
return ret;
}
};
// Find shortest path length from 0 to n - 1 with k edges, min_edges <= k <= max_edges
// https://noshi91.hatenablog.com/entry/2022/01/13/001217
template <class Cost, class F>
Cost monge_shortest_path_with_specified_edges(int n, int min_edges, int max_edges,
Cost max_abs_cost, F cost_callback) {
assert(1 <= n);
assert(0 <= min_edges);
assert(min_edges <= max_edges);
assert(max_edges <= n - 1);
monge_shortest_path<Cost> msp;
auto eval = [&](Cost p) -> Cost {
msp.solve(n, [&](int i, int j) { return cost_callback(i, j) - p; });
return -msp.dist.back() - p * (p < 0 ? max_edges : min_edges);
};
Cost lo = -max_abs_cost * 3, hi = max_abs_cost * 3;
while (lo + 1 < hi) {
Cost p = (lo + hi) / 2, f = eval(p), df = eval(p + 1) - f;
if (df == Cost()) {
return -f;
} else {
(df < Cost() ? lo : hi) = p;
}
}
Cost flo = eval(lo), fhi = eval(hi);
return flo < fhi ? -flo : -fhi;
}
#line 3 "other_algorithms/test/monge_shortest_path.yuki705.test.cpp"
#line 5 "other_algorithms/test/monge_shortest_path.yuki705.test.cpp"
#include <cmath>
#include <iostream>
using namespace std;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N;
cin >> N;
vector<int> A(N), X(N), Y(N);
for (auto &a : A) cin >> a;
for (auto &x : X) cin >> x;
for (auto &y : Y) cin >> y;
auto weight = [&](int j, int i) {
assert(j < i);
--i;
const long long dx = abs(A.at(i) - X.at(j)), dy = Y.at(j);
return dx * dx * dx + dy * dy * dy;
};
monge_shortest_path<long long> msp;
cout << msp.solve(N + 1, weight) << '\n';
}
hitonanode