結果
問題 | No.992 最長増加部分列の数え上げ |
ユーザー |
![]() |
提出日時 | 2024-10-11 18:46:36 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,593 bytes |
コンパイル時間 | 2,432 ms |
コンパイル使用メモリ | 208,956 KB |
最終ジャッジ日時 | 2025-02-24 17:23:20 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 41 WA * 1 |
ソースコード
// #define _GLIBCXX_DEBUG#include <bits/stdc++.h>// clang-format offstd::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;returnstd::reverse(s.begin(),s.end()),os<<s;}#define checkpoint() (void(0))#define debug(...) (void(0))#define debugArray(x,n) (void(0))#define debugMatrix(x,h,w) (void(0))// clang-format on#include <type_traits>template <class Uint> constexpr inline Uint mod_inv(Uint a, Uint mod) {std::make_signed_t<Uint> x= 1, y= 0, z= 0;for (Uint q= 0, b= mod, c= 0; b;) z= x, x= y, y= z - y * (q= a / b), c= a, a= b, b= c - b * q;return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod;}namespace math_internal {using namespace std;using u8= unsigned char;using u32= unsigned;using i64= long long;using u64= unsigned long long;using u128= __uint128_t;struct MP_Na { // mod < 2^32u32 mod;constexpr MP_Na(): mod(0) {}constexpr MP_Na(u32 m): mod(m) {}constexpr inline u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; }constexpr inline u32 set(u32 n) const { return n; }constexpr inline u32 get(u32 n) const { return n; }constexpr inline u32 norm(u32 n) const { return n; }constexpr inline u32 plus(u64 l, u32 r) const { return l+= r, l < mod ? l : l - mod; }constexpr inline u32 diff(u64 l, u32 r) const { return l-= r, l >> 63 ? l + mod : l; }};template <class u_t, class du_t, u8 B> struct MP_Mo { // mod < 2^32, mod < 2^62u_t mod;constexpr MP_Mo(): mod(0), iv(0), r2(0) {}constexpr MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {}constexpr inline u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); }constexpr inline u_t set(u_t n) const { return mul(n, r2); }constexpr inline u_t get(u_t n) const { return n= reduce(n), n >= mod ? n - mod : n; }constexpr inline u_t norm(u_t n) const { return n >= mod ? n - mod : n; }constexpr inline u_t plus(u_t l, u_t r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }constexpr inline u_t diff(u_t l, u_t r) const { return l-= r, l >> (B - 1) ? l + (mod << 1) : l; }private:u_t iv, r2;static constexpr u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; }constexpr inline u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); }};using MP_Mo32= MP_Mo<u32, u64, 32>;using MP_Mo64= MP_Mo<u64, u128, 64>;struct MP_Br { // 2^20 < mod <= 2^41u64 mod;constexpr MP_Br(): mod(0), x(0) {}constexpr MP_Br(u64 m): mod(m), x((u128(1) << 84) / m) {}constexpr inline u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); }static constexpr inline u64 set(u64 n) { return n; }constexpr inline u64 get(u64 n) const { return n >= mod ? n - mod : n; }constexpr inline u64 norm(u64 n) const { return n >= mod ? n - mod : n; }constexpr inline u64 plus(u64 l, u64 r) const { return l+= r, l < (mod << 1) ? l : l - (mod << 1); }constexpr inline u64 diff(u64 l, u64 r) const { return l-= r, l >> 63 ? l + (mod << 1) : l; }private:u64 x;constexpr inline u128 quo(const u128 &n) const { return (n * x) >> 84; }constexpr inline u64 rem(const u128 &n) const { return n - quo(n) * mod; }};template <class du_t, u8 B> struct MP_D2B1 { // mod < 2^63, mod < 2^64u64 mod;constexpr MP_D2B1(): mod(0), s(0), d(0), v(0) {}constexpr MP_D2B1(u64 m): mod(m), s(__builtin_clzll(m)), d(m << s), v(u128(-1) / d) {}constexpr inline u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; }constexpr inline u64 set(u64 n) const { return n; }constexpr inline u64 get(u64 n) const { return n; }constexpr inline u64 norm(u64 n) const { return n; }constexpr inline u64 plus(du_t l, u64 r) const { return l+= r, l < mod ? l : l - mod; }constexpr inline u64 diff(du_t l, u64 r) const { return l-= r, l >> B ? l + mod : l; }private:u8 s;u64 d, v;constexpr inline u64 rem(const u128 &u) const {u128 q= (u >> 64) * v + u;u64 r= u64(u) - (q >> 64) * d - d;if (r > u64(q)) r+= d;if (r >= d) r-= d;return r;}};using MP_D2B1_1= MP_D2B1<u64, 63>;using MP_D2B1_2= MP_D2B1<u128, 127>;template <class u_t, class MP> constexpr u_t pow(u_t x, u64 k, const MP &md) {for (u_t ret= md.set(1);; x= md.mul(x, x))if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret;}}namespace math_internal {struct m_b {};struct s_b: m_b {};}template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>;template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>;namespace math_internal {template <class MP, u64 MOD> struct SB: s_b {protected:static constexpr MP md= MP(MOD);};template <class U, class B> struct MInt: public B {using Uint= U;static constexpr inline auto mod() { return B::md.mod; }constexpr MInt(): x(0) {}template <class T, typename= enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>>> constexpr MInt(T v): x(B::md.set(v.val() % B::md.mod)) {}constexpr MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {}constexpr MInt operator-() const { return MInt() - *this; }#define FUNC(name, op) \constexpr MInt name const { \MInt ret; \return ret.x= op, ret; \}FUNC(operator+(const MInt & r), B::md.plus(x, r.x))FUNC(operator-(const MInt & r), B::md.diff(x, r.x))FUNC(operator*(const MInt & r), B::md.mul(x, r.x))FUNC(pow(u64 k), math_internal::pow(x, k, B::md))#undef FUNCconstexpr MInt operator/(const MInt &r) const { return *this * r.inv(); }constexpr MInt &operator+=(const MInt &r) { return *this= *this + r; }constexpr MInt &operator-=(const MInt &r) { return *this= *this - r; }constexpr MInt &operator*=(const MInt &r) { return *this= *this * r; }constexpr MInt &operator/=(const MInt &r) { return *this= *this / r; }constexpr bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); }constexpr bool operator!=(const MInt &r) const { return !(*this == r); }constexpr bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); }constexpr inline MInt inv() const { return mod_inv<U>(val(), B::md.mod); }constexpr inline Uint val() const { return B::md.get(x); }friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); }friend istream &operator>>(istream &is, MInt &r) {i64 v;return is >> v, r= MInt(v), is;}private:Uint x;};template <u64 MOD> using MP_B= conditional_t < (MOD < (1 << 30)) & MOD, MP_Mo32, conditional_t < MOD < (1ull << 32), MP_Na, conditional_t<(MOD <(1ull << 62)) & MOD, MP_Mo64, conditional_t<MOD<(1ull << 41), MP_Br, conditional_t<MOD<(1ull << 63), MP_D2B1_1, MP_D2B1_2>>>>>;template <u64 MOD> using ModInt= MInt < conditional_t<MOD<(1 << 30), u32, u64>, SB<MP_B<MOD>, MOD>>;}using math_internal::ModInt;template <class T> std::pair<std::vector<int>, std::vector<std::vector<int>>> longest_increasing_subsequence(const std::vector<T> &a) {int n= a.size();std::vector<int> idx(n);std::vector<T> dp(n);int len= 0;for (int i= 0; i < n; ++i) {auto it= std::lower_bound(dp.begin(), dp.begin() + len, a[i]);if (*it= a[i]; (idx[i]= it - dp.begin()) == len) ++len;}std::vector<std::vector<int>> cand(len);for (int i= n; i--;) {if (idx[i] == len - 1 || (!cand[idx[i] + 1].empty() && a[i] < a[cand[idx[i] + 1].back()])) cand[idx[i]].emplace_back(i);else idx[i]= -1;}for (auto &c: cand) std::reverse(c.begin(), c.end());return {idx, cand};}using namespace std;signed main() {cin.tie(0);ios::sync_with_stdio(false);using Mint= ModInt<int(1e9 + 7)>;int N;cin >> N;vector<int> A(N);for (int i= 0; i < N; ++i) cin >> A[i];auto [_, cand]= longest_increasing_subsequence(A);int k= cand.size();vector<Mint> dp(cand[0].size(), 1);for (int i= 1; i < k; ++i) {int n= cand[i - 1].size(), m= cand[i].size();vector<Mint> ndp(m);Mint sum= 0;for (int j= 0, l= 0, r= 0; j < m; ++j) {while (r < n && cand[i - 1][r] < cand[i][j]) sum+= dp[r++];while (l < n && A[cand[i - 1][l]] > A[cand[i][j]]) sum-= dp[l++];ndp[j]= sum;}dp= std::move(ndp);}Mint ans= 0;for (auto x: dp) ans+= x;cout << ans << '\n';return 0;}