結果
問題 | No.2928 Gridpath |
ユーザー | Iroha_3856 |
提出日時 | 2024-10-12 15:21:26 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 25,357 bytes |
コンパイル時間 | 8,701 ms |
コンパイル使用メモリ | 356,764 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-12 15:21:36 |
合計ジャッジ時間 | 9,581 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
testcase_19 | AC | 3 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 3 ms
5,248 KB |
ソースコード
//==========Iroha_3856's Library========== //命名規則 //自作関数:ownFunction //自作クラス:OwnClass //#define _GLIBCXX_DEBUG //STL #include<bits/stdc++.h> using namespace std; //AtCoder-Library #if __has_include(<atcoder/all>) #include<atcoder/all> using namespace atcoder; using mint = atcoder::modint998244353; #endif //PBDS-tree #if __has_include(<ext/pb_ds/assoc_container.hpp>) #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> #include<ext/pb_ds/tag_and_trait.hpp> using namespace __gnu_pbds; template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; //tree.find_by_order(k) = tree[k] (0-indexed) //tree.order_of_key(k) = tree.lower_bound(k) - tree.begin() //Note: Can only be used for non-multiple sets. #endif #define vec vector #define ll long long #define ull unsigned long long #define vi vec<int> #define vll vec<ll> #define vb vec<bool> #define vvi vec<vi> #define vvll vec<vll> #define vvb vec<vb> #define vvvi vec<vvi> #define vvvll vec<vvll> #define vvvb vec<vvb> #define pii pair<int, int> #define pll pair<ll, ll> #define pli pair<ll, int> #define pq priority_queue template<class T> using spq = priority_queue<T, vector<T>, greater<T>>; #define eb emplace_back #define pb push_back #define all(x) (x).begin(), (x).end() #define rep(i, l, r) for (int i=(int)(l); i<(int)(r); i++) #define REP(i, l, r) for (int i=(int)(l); i<=(int)(r); i++) #define siz(x) (int)x.size() template<class T>bool chmax(T &a, T b) { if (a<b) { a=b; return 1; } return 0; } template<class T>bool chmin(T &a, T b) { if (b<a) { a=b; return 1; } return 0; } //slice(A, l, r) = A[l, r) template<class T> vector<T> slice(const vector<T>& A, int l, int r) { assert(0 <= l && l <= r && r <= (int)A.size()); vector<T> ret; for (int i = l; i<r; i++) ret.push_back(A[i]); return ret; } //slice(S, l, r) = S[l, r) string slice(const string& S, int l, int r) { assert(0 <= l && l <= r && r <= (int)S.size()); string ret; for (int i = l; i<r; i++) ret += S[i]; return ret; } template<class T> T allSum(vector<T> A) { return reduce(A.begin(), A.end()); } template<class T> T allMax(vector<T> A) { return *max_element(A.begin(), A.end()); } template<class T> T allMin(vector<T> A) { return *min_element(A.begin(), A.end()); } template<class T> int allArgMax(vector<T> A) { return max_element(A.begin(), A.end())-A.begin(); } template<class T> int allArgMin(vector<T> A) { return min_element(A.begin(), A.end())-A.begin(); } ll ceil(ll x, ll y) { assert(y != 0); if ((x >= 0) == (y >= 0)) { return (abs(x) + abs(y)-1)/abs(y); } else { return -(abs(x)/abs(y)); } } ll floor(ll x, ll y) { assert(y != 0); if ((x >= 0) == (y >= 0)) { return abs(x)/abs(y); } else { return -((abs(x) + abs(y)-1)/abs(y)); } } template<class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template<class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <class T> istream &operator>>(istream &is, vector<T> &v) { for(auto &x : v) { is >> x; } return is; } template <class T> ostream &operator<<(ostream &os, const vector<T> &v) { for(int i = 0; i < (int)v.size(); i++) { if(i != (int)v.size() - 1) os << v[i] << " "; else os << v[i]; } return os; } template<class T> void print(T A, bool f = true) { cerr << A; if (f) cerr << endl; } template<class T, class U> void print(pair<T, U> A, bool f = true) { cerr << "{" << A.first << ", " << A.second << "}"; if (f) cerr << endl; } template<class T> void print(vector<T> A, bool f = true) { cerr << "{"; for (int i = 0; i<(int)A.size(); i++) { print(A[i], false); if (i+1 != (int)A.size()) cerr << ", "; } cerr << "}"; if (f) cerr << endl; } #define debug(x) cerr << #x << " = "; print(x) struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } iosetup; struct Edge { int to; ll cost; Edge(int to, ll cost) : to(to), cost(cost) {} }; const int mod = 998244353; const int MOD = 1000000007; const int inf = 1000010000; const ll INF = 4e18; //グラフ入力 //無向重みなしグラフ vector<vector<int>> graph(int& N, int& M) { cin >> N >> M; vector<vector<int>> G(N); for (int i = 0; i < M; i++) { int u, v; cin >> u >> v; u--; v--; G[u].push_back(v); G[v].push_back(u); } return G; } //無向重み付きグラフ vector<vector<Edge>> weightedGraph(int& N, int& M) { cin >> N >> M; vector<vector<Edge>> G(N); for (int i = 0; i < M; i++) { int u, v; ll w; cin >> u >> v >> w; u--; v--; G[u].push_back(Edge{v, w}); G[v].push_back(Edge{u, w}); } return G; } //有向重みなしグラフ vector<vector<int>> directedGraph(int& N, int& M) { cin >> N >> M; vector<vector<int>> G(N); for (int i = 0; i < M; i++) { int u, v; cin >> u >> v; u--; v--; G[u].push_back(v); } return G; } //有向重み付きグラフ vector<vector<Edge>> weightedDirectedGraph(int& N, int& M) { cin >> N >> M; vector<vector<Edge>> G(N); for (int i = 0; i < M; i++) { int u, v; ll w; cin >> u >> v >> w; u--; v--; G[u].push_back(Edge{v, w}); } return G; } //1次元累積和 //全て0-indexedで処理 template<class T> struct ComulativeSum { int siz; vector<T> S; bool done; ComulativeSum() : ComulativeSum(0) {} ComulativeSum(int N) : ComulativeSum(vector<T>(N, 0)) {} //累積和の構築はしない ComulativeSum(vector<T> A) { done = false; siz = (int)A.size(); S.resize(siz+1); S[0] = 0; for (int i = 0; i < siz; i++) { S[i+1] = A[i]; } } //累積 void run() { assert(!done); for (int i = 1; i <= siz; i++) { S[i] += S[i-1]; } done = true; } //加算(累積前のみ) T add(int idx, T a) { assert(!done); S[idx+1] += a; return S[idx+1]; } //代入(累積前のみ) T set(int idx, T a) { assert(!done); S[idx+1] = a; return S[idx+1]; } //取得(累積前、累積後両方とも可能だが、どちらを想定するかをexpected_doneで渡す) T get(int idx, bool expected_done) { assert(expected_done == done); return S[idx+1]; } //区間和取得(累積後のみ) //半開区間で与える T sum(int l, int r) { assert(done); return S[r]-S[l]; } }; template<class T> struct ComulativeSum2D { bool done; int H, W; vector<vector<T>> S; ComulativeSum2D() : ComulativeSum2D(0, 0) {} ComulativeSum2D(int h, int w) : ComulativeSum2D(vector<vector<T>>(h, vector<T>(w))) {} ComulativeSum2D(vector<vector<T>> A) { done = false; H = (int)A.size(); W = (int)A[0].size(); S.resize(H+1, vector<T>(W+1, 0)); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) S[i+1][j+1] = A[i][j]; } } //累積 void run() { assert(!done); for (int i = 1; i <= H; i++) { for (int j = 1; j <= W; j++) { S[i][j] += S[i][j-1]; } } for (int j = 1; j <= W; j++) { for (int i = 1; i <= H; i++) S[i][j] += S[i-1][j]; } } //加算(累積前のみ) T add(int r, int c, T x) { assert(!done); S[r+1][c+1] += x; } //代入(累積前のみ) T set(int r, int c, T x) { assert(!done); S[r+1][c+1] = x; } //取得(累積前、累積後両方とも可能だが、どちらを想定するかをexpected_doneで渡す) T get(int r, int c, bool expect_done) { assert(expect_done == done); return S[r+1][c+1]; } //区間和取得(累積後のみ) //行、列とも半開区間で与える T sum(int left_row, int right_row, int left_column, int right_column) { return S[right_row][right_column] - S[right_row][left_column] - S[left_row][right_column] + S[left_row][left_column]; } }; //よくつかうセグ木用の型宣言 //一点代入区間総和 namespace __RangeSumSegTree { template<class T> T op(T a, T b) {return a + b;} template<class T> T e() {return 0;} }; template<class T> using RangeSumSegTree = atcoder::segtree<T, __RangeSumSegTree::op<T>, __RangeSumSegTree::e<T>>; //一点代入区間最小値 namespace __RangeMinSegTree { template<class T> T op(T a, T b) {return min(a, b);} template<class T, T __e> T e() {return __e;} }; template<class T, T __e> using RangeMinSegTree = atcoder::segtree<T, __RangeMinSegTree::op<T>, __RangeMinSegTree::e<T, __e>>; //一点代入区間最大値 namespace __RangeMaxSegTree { template<class T> T op(T a, T b) {return max(a, b);} template<class T, T __e> T e() {return __e;} }; template<class T, T __e> using RangeMaxSegTree = atcoder::segtree<T, __RangeMaxSegTree::op<T>, __RangeMaxSegTree::e<T, __e>>; //Union-Find struct UnionFind { vector<int> par, siz; int connected_components; UnionFind() { init(0); } //n頂点0辺のグラフを作る UnionFind(int n) { init(n); } void init (int n) { par.resize(n, -1); siz.resize(n, 1); connected_components = n; } //頂点xの連結成分の代表をreturnする int root(int x) { if (par[x]==-1) return x; return par[x] = root(par[x]); } //頂点xと頂点yが同じ連結成分に属しているか判定する bool same(int x, int y) { return root(x)==root(y); } //頂点xと頂点yを結ぶ辺を作る bool merge(int x, int y) { x = root(x); y = root(y); if (x==y) return false; //siz[x] > siz[y]を前提とする if (siz[x] < siz[y]) swap(x, y); par[y] = x; siz[x]+=siz[y]; connected_components--; return true; } //頂点xの連結成分の頂点数をreturnする int size(int x) { return siz[root(x)]; } int connectedComponents() { return connected_components; } //これまでの頂点数をnとすると、頂点nを追加する(0-indexed) //O(1) void add_vertex() { par.push_back(-1); siz.push_back(1); } //これまでの頂点数をnとすると、vector<int> tosであらわされる辺を持った頂点nを追加する (0-indexed) //O(tos.size()) void add_vertex(vector<int> tos) { add_vertex(); int s = (int)par.size(); for (int to : tos) { merge(s-1, to); } } }; //重み付きUnion-Find template<class T> struct WeightedUnionFind { vector<int> par, siz; vector<T> diff_weight; WeightedUnionFind() : WeightedUnionFind(0) {} WeightedUnionFind(int n) { init(n); } void init(int n) { par.resize(n, -1); siz.resize(n, 1); diff_weight.resize(n, 0); } int root(int x) { if (par[x]==-1) return x; int r = root(par[x]); diff_weight[x] += diff_weight[par[x]]; return par[x] = r; } T weight(int x) { root(x); return diff_weight[x]; } bool same(int x, int y) { return root(x)==root(y); } //weight[y]-weight[x]=wとなるように辺を張る bool merge(int x, int y, T w) { w += weight(x); w -= weight(y); x = root(x); y = root(y); if (x == y) { if (weight(y)-weight(x)==w) return true; return false; } if (siz[x] < siz[y]) swap(x, y), w = -w; par[y] = x; diff_weight[y] = w; return true; } }; //連結判定 //グラフGにおいて、startから頂点iが行けるかをvector<bool>で返す vector<bool> connected(const vector<vector<int>>& G, int start) { int N = (int)G.size(); stack<int> S; vector<bool> seen(N, false); S.push(start); seen[start] = true; while(!S.empty()) { int pos = S.top(); S.pop(); for (int to : G[pos]) { if (!seen[to]) { seen[to] = true; S.push(to); } } } return seen; } //BFS //重みなしグラフにおける最短経路問題 vector<int> bfs(const vector<vector<int>> &G, int start, int impossible) { queue<int> Q; vector<int> dist((int)G.size(), impossible); Q.push(start); dist[start] = 0; while(!Q.empty()) { int pos = Q.front(); Q.pop(); for (int to : G[pos]) { if (dist[to]!=impossible) continue; Q.push(to); dist[to] = dist[pos]+1; } } return dist; } //dijkstra //重み付きグラフにおける最短経路問題 vector<long long> dijkstra(const vector<vector<Edge>>& G, int start, long long impossible) { int N = (int)G.size(); vector<long long> dist(N, impossible); priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> Q; dist[start] = 0LL; Q.emplace(dist[start], start); while(!Q.empty()) { pair<long long, int> pos = Q.top(); Q.pop(); long long d = pos.first; int v = pos.second; //trash if (dist[v]!=impossible && dist[v]<d) continue; for (Edge e : G[v]) { if (dist[e.to]==impossible || dist[e.to]>d+e.cost) { dist[e.to] = d+e.cost; Q.push(make_pair(dist[e.to], e.to)); } } } return dist; } //グリッド上でのBFS //スタート位置の文字を与える vector<vector<int>> gridBfs(const vector<string> &s, char start, const string wall, int impossible) { const int vr[4] = {0, 1, 0, -1}, vc[4] = {1, 0, -1, 0}; vector<vector<int>> dist((int)s.size(), vector<int>(s[0].size(), impossible)); queue<pair<int, int>> Q; //search start for (int i = 0; i < (int)s.size(); i++) { for (int j = 0; j < (int)s[0].size(); j++) { if (s[i][j] == start) { Q.emplace(i, j); dist[i][j] = 0; } } } //BFS while(!Q.empty()) { pair<int, int> pos = Q.front(); Q.pop(); for (int i = 0; i < 4; i++) { int nr = pos.first+vr[i], nc = pos.second+vc[i]; if (nr < 0 || nr >= (int)s.size() || nc < 0 || nc >= (int)s[0].size()) continue; if (dist[nr][nc] != impossible) continue; if (wall.find(s[nr][nc]) != string::npos) continue; dist[nr][nc] = dist[pos.first][pos.second] + 1; Q.emplace(nr, nc); } } return dist; } //グリッド上でのBFS //スタート位置の行、列を与える vector<vector<int>> gridBfs(const vector<string> &s, int startrow, int startcolumn, const string wall, int impossible) { const int vr[4] = {0, 1, 0, -1}, vc[4] = {1, 0, -1, 0}; vector<vector<int>> dist((int)s.size(), vector<int>(s[0].size(), impossible)); queue<pair<int, int>> Q; Q.emplace(startrow, startcolumn); dist[startrow][startcolumn] = 0; //BFS while(!Q.empty()) { pair<int, int> pos = Q.front(); Q.pop(); for (int i = 0; i < 4; i++) { int nr = pos.first+vr[i], nc = pos.second+vc[i]; if (nr < 0 || nr >= (int)s.size() || nc < 0 || nc >= (int)s[0].size()) continue; if (dist[nr][nc] != impossible) continue; if (wall.find(s[nr][nc]) != string::npos) continue; dist[nr][nc] = dist[pos.first][pos.second] + 1; Q.emplace(nr, nc); } } return dist; } //MST //{辺長, u, v} の vector<tuple<ll, int, int>> を渡す long long mst(vector<tuple<long long, int, int>> E, int N, bool m) { int M = (int)E.size(); if (!m) sort(E.begin(), E.end()); else sort(E.begin(), E.end(), greater<tuple<long long, int, int>>()); dsu d(N); long long ret = 0; for (int i=0; i<M; i++) { if (!d.same(get<1>(E[i]), get<2>(E[i]))) { ret+=(long long) get<0>(E[i]); d.merge(get<1>(E[i]), get<2>(E[i])); } } return ret; } //DAG判定 bool isDAG(const vector<vector<int>>& G) { int V = (int)G.size(); vector<int> deg(V, 0); rep(i, 0, V) { for (int to : G[i]) deg[to]++; } queue<int> Q; rep(i, 0, V) if (deg[i] == 0) Q.push(i); vector<bool> ans(V, false); while(!Q.empty()) { int v = Q.front(); Q.pop(); ans[v] = true; for (int to : G[v]) { deg[to]--; if (deg[to] == 0) Q.push(to); } } bool k = true; rep(i, 0, V) if (!ans[i]) k = false; return k; } //トポロジカルソート //入次数が0の頂点が最初に来る bool topologicalSort(const vector<vector<int>>& G, vector<int>& res) { assert(res.empty()); int V = (int)G.size(); vector<int> deg(V); rep(i, 0, V) { for (int to : G[i]) deg[to]++; } queue<int> Q; rep(i, 0, V) { if (deg[i] == 0) Q.push(i); } while(!Q.empty()) { int v = Q.front(); Q.pop(); res.push_back(v); for (int to : G[v]) { deg[to]--; if (deg[to] == 0) Q.push(to); } } if ((int)res.size() != V) { res.clear(); return false; } return true; } //素数判定 bool isPrime(long long N) { for (long long d = 2; d * d <= N; d++) { if (N%d == 0) return false; } return true; } //エラトステネスの篩による [1, N] の素数判定 vector<bool> primeSieve(int N) { vector<bool> isPrime(N+1); isPrime[0] = isPrime[1] = false; for (int i = 2; i <= N; i++) { if (isPrime[i]) { for (int j = 2*i; j <= N; j += i) isPrime[j] = false; } } return isPrime; } //最小素因数 (Least Prime Factor) long long lpf(long long N) { for (long long d = 2; d * d <= N; d++) { if (N%d == 0) { return d; } } return N; } //エラトステネスの篩による [1, N] の最小素因数 vector<int> lpfSieve(int N) { vector<int> lpf(N+1); iota(lpf.begin(), lpf.end(), 0); lpf[0] = lpf[1] = -1; for (int i = 2; i <= N; i++) { if (lpf[i] == i) { for (int j = 2*i; j <= N; j += i) { lpf[j] = min(lpf[j], i); } } } return lpf; } //N の 素因数分解 //{p, e} of N を返す vector<pair<long long, int>> primeFactorization(long long N) { vector<pair<long long, int>> ret; for (long long d = 2; d * d <= N; d++) { if (N%d) continue; int cnt = 0; while(N%d == 0) { cnt++; N /= d; } ret.push_back({d, cnt}); } return ret; } //[1, N] の素因数分解 //[1, N] の lpf 配列を与えて、{{p, e} of 0, {p, e} of 1, ... , {p, e} of N} を返す //0, 1は空 vector<vector<pair<int, int>>> primeFactorization(vector<int> lpf) { int N = (int)lpf.size()-1; vector<vector<pair<int, int>>> ret(N+1); for (int i = 2; i <= N; i++) { if (lpf[i] == i) ret[i] = {{i, 1}}; else { ret[i] = ret[i/lpf[i]]; if (ret[i].back().first == lpf[i]) { ret[i].back().second++; } else ret[i].push_back({lpf[i], 1}); } } return ret; } struct combination { vector<mint> fac, infac; combination(int n) { fac.resize(n+1); infac.resize(n+1); fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i-1] * i; infac[n] = fac[n].inv(); for (int i = n; i >= 1; i--) infac[i-1] = infac[i] * i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fac[n] * infac[k] * infac[n-k]; } }; struct Hash { vector<long long> mod = {998244353, 1000000007, 1000000009, 1000000021, 1000000033}; #ifdef const_rand long long K = const_rand; #else long long K = 100 + rand()%100; #endif vector<vector<long long>> Pow; //H[i] = Hash[0, i) vector<vector<long long>> H; int B = 5; vector<int> S; int N; void init(string s) { N = (int)s.size(); S.resize(N); for (int i = 0; i<N; i++) { if (islower(s[i])) S[i] = s[i]-'a' + 1; if (isupper(s[i])) S[i] = s[i]-'A' + 27; } Pow.resize(B, vector<long long>(N+1)); for (int i = 0; i<B; i++) { Pow[i][0] = 1; for(int j = 1; j<N+1; j++) { Pow[i][j] = Pow[i][j-1] * K; Pow[i][j] %= mod[i]; } } H.resize(B); for (int i = 0; i<B; i++) { H[i].resize(N+1); H[i][0] = 0; for (int j = 1; j<N+1; j++) { H[i][j] = (H[i][j-1] * K + S[j-1])%mod[i]; } } } Hash() { init(""); } Hash(string s) { init(s); } Hash(string s, vector<long long> m) { mod = m; B = (int)m.size(); init(s); } //val(l, r) = Hash[l, r) vector<long long> val(int l, int r) { vector<long long> res(B); for (int i = 0; i<B; i++) { res[i] = H[i][r] - (Pow[i][r-l] * H[i][l]%mod[i]); if (res[i] < 0) res[i] += mod[i]; } return res; } //same(l1, r1, l2, r2) = issame(S[l1, r1), S[l2, r2)) bool same(int l1, int r1, int l2, int r2) { if (val(l1, r1) == val(l2, r2)) return true; return false; } }; /* created by drken https://qiita.com/drken/items/b97ff231e43bce50199a 返り値: a と b の最大公約数 ax + by = gcd(a, b) を満たす (x, y) が格納される <補足> (a, b) = (0, 2), (-1, -3)など、a<=0, b<=0の場合でも動きます。 ただし、返ってくるgcdが負になることがあることに注意 gcdが0になるのは(a, b) = (0, 0)の場合のみです (a, b) = (0, 2)などの場合はちゃんと2となって返ってきます */ long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } vector<pair<char, int>> runLength(const string& S) { int N = (int)S.size(); vector<pair<char, int>> ret; for (int l = 0; l<N;) { int r = l+1; for (; r<N && S[l]==S[r] && S[r]=='='; r++) ; ret.emplace_back(S[l], r-l); l = r; } return ret; } string runLengthDecode(const vector<pair<char, int>>& code) { string ret = ""; for (pair<char, int> c : code) { ret+=string(c.first, c.second); } return ret; } int digitSum(long long T) { string t = to_string(T); int ret = 0; for (char k : t) ret+=k-'0'; return ret; } template<class T> vector<int> compress(const vector<T>& A) { vector<T> B = A; sort(B.begin(), B.end()); B.erase(unique(B.begin(), B.end()), B.end()); vector<int> res((int)A.size()); for (int i = 0; i < (int)A.size(); i++) { res[i] = lower_bound(B.begin(), B.end(), A[i])-B.begin(); } return res; } //vector<T>であらわされるn進数を10進数に変換する template<class T> T changeBaseToTen(const vector<T>& A, T n) { T ret = 0; T mul = 1; for (int i = (int)A.size()-1; i >= 0; i--) { ret += mul * A[i]; mul *= n; } return ret; } //10進数でxのものをn進数に変換する template<class T> vector<T> changeBaseFromTen(T x, T n) { vector<T> ret; while(x != 0) { ret.push_back(x%n); x /= n; } reverse(ret.begin(), ret.end()); return ret; } //n進法の桁のvectorであるSをm進法に変換する template<class T> vector<T> changeBase(const vector<T>& S, T n, T m) { T ten = changeBaseToTen(S, n); return changeBaseTromTen(ten, m); } int H, W; int gi, gj; vector<int> di = {1, -1, 0, 0}, dj = {0, 0, 1, -1}; int ans = 0; vector<vector<bool>> S; void dfs(int ci, int cj) { if (ci == gi and cj == gj) { ans++; return; } S[ci][cj] = true; rep(k, 0, 4) { int ni = ci + di[k], nj = cj + dj[k]; if (ni < 0 || nj < 0 || ni >= H || nj >= W) continue; int cnt = 0; rep(nk, 0, 4) { int nni = ni + di[nk], nnj = nj + dj[nk]; if (nni < 0 || nnj < 0 || nni >= H || nnj >= W) continue; cnt += S[nni][nnj]; } if (cnt >= 2) continue; if (S[ni][nj]) continue; dfs(ni, nj); } S[ci][cj] = false; } int main() { cin >> H >> W; int si, sj; cin >> si >> sj; si--; sj--; cin >> gi >> gj; gi--; gj--; S.resize(H, vector<bool>(W, false)); dfs(si, sj); cout << ans << endl; }