結果
| 問題 | No.2929 Miracle Branch | 
| コンテスト | |
| ユーザー |  detteiuu | 
| 提出日時 | 2024-10-12 17:13:13 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 180 ms / 2,000 ms | 
| コード長 | 3,016 bytes | 
| コンパイル時間 | 216 ms | 
| コンパイル使用メモリ | 82,048 KB | 
| 実行使用メモリ | 85,504 KB | 
| 最終ジャッジ日時 | 2024-10-12 17:13:26 | 
| 合計ジャッジ時間 | 10,981 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 43 | 
ソースコード
X = int(input())
def gcd(a, b):
    while a:
        a, b = b%a, a
    return b
def is_prime(n):
    if n == 2:
        return 1
    if n == 1 or n%2 == 0:
        return 0
    m = n - 1
    lsb = m & -m
    s = lsb.bit_length()-1
    d = m // lsb
    test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in test_numbers:
        if a == n:
            continue
        x = pow(a,d,n)
        r = 0
        if x == 1:
            continue
        while x != m:
            x = pow(x,2,n)
            r += 1
            if x == 1 or r == s:
                return 0
    return 1
def find_prime_factor(n):
    if n%2 == 0:
        return 2
    m = int(n**0.125)+1
    for c in range(1,n):
        f = lambda a: (pow(a,2,n)+c)%n
        y = 0
        g = q = r = 1
        k = 0
        while g == 1:
            x = y
            while k < 3*r//4:
                y = f(y)
                k += 1
            while k < r and g == 1:
                ys = y
                for _ in range(min(m, r-k)):
                    y = f(y)
                    q = q*abs(x-y)%n
                g = gcd(q,n)
                k += m
            k = r
            r *= 2
        if g == n:
            g = 1
            y = ys
            while g == 1:
                y = f(y)
                g = gcd(abs(x-y),n)
        if g == n:
            continue
        if is_prime(g):
            return g
        elif is_prime(n//g):
            return n//g
        else:
            return find_prime_factor(g)
def factorize(n):
    res = []
    while not is_prime(n) and n > 1:  # nが合成数である間nの素因数の探索を繰り返す
        p = find_prime_factor(n)
        s = 0
        while n%p == 0:  # nが素因数pで割れる間割り続け、出力に追加
            n //= p
            s += 1
        res.append((p, s))
    if n > 1:  # n>1であればnは素数なので出力に追加
        res.append((n, 1))
    return res
def divisor(n):
    ans = [1]
    pf = factorize(n)
    for p, c in pf:
        L = len(ans)
        for i in range(L):
            v = 1
            for _ in range(c):
                v *= p
                ans.append(ans[i]*v)
    return sorted(ans)
F = factorize(X)
if X == 1:
    F = [(1, 1)]
cnt = 0
brown = 0
for n, c in F:
    if n != 2:
        cnt += n*c+c
        brown += c
    else:
        cnt += 4*(c//2)+2*(c%2)+(c+1)//2
        brown += (c+1)//2
if cnt > 10**5*2:
    exit(print(-1))
print(cnt)
b = 1
g = brown+1
for i, (n, c) in enumerate(F):
    if n != 2:
        for _ in range(c):
            for _ in range(n):
                print(b, g)
                g += 1
            b += 1
    else:
        for _ in range(c//2):
            for _ in range(4):
                print(b, g)
                g += 1
            b += 1
        if c%2 == 1:
            for _ in range(2):
                print(b, g)
                g += 1
            b += 1
for i in range(brown-1):
    print(i+1, i+2)
print(*(["b"]*brown), *(["g"]*(cnt-brown)))
            
            
            
        