結果
問題 | No.2161 Black Market |
ユーザー | 👑 p-adic |
提出日時 | 2024-10-17 00:59:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4,416 ms / 7,000 ms |
コード長 | 62,074 bytes |
コンパイル時間 | 4,591 ms |
コンパイル使用メモリ | 275,528 KB |
実行使用メモリ | 28,188 KB |
最終ジャッジ日時 | 2024-10-17 00:59:47 |
合計ジャッジ時間 | 17,587 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 3 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 3 ms
6,820 KB |
testcase_10 | AC | 7 ms
6,820 KB |
testcase_11 | AC | 4 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | AC | 3 ms
6,816 KB |
testcase_15 | AC | 6 ms
6,816 KB |
testcase_16 | AC | 3 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 3 ms
6,816 KB |
testcase_20 | AC | 3 ms
6,820 KB |
testcase_21 | AC | 2 ms
6,816 KB |
testcase_22 | AC | 11 ms
6,820 KB |
testcase_23 | AC | 13 ms
6,820 KB |
testcase_24 | AC | 4,416 ms
28,188 KB |
testcase_25 | AC | 686 ms
22,700 KB |
testcase_26 | AC | 3,718 ms
28,088 KB |
testcase_27 | AC | 10 ms
6,820 KB |
testcase_28 | AC | 26 ms
6,816 KB |
testcase_29 | AC | 30 ms
6,820 KB |
testcase_30 | AC | 75 ms
6,820 KB |
testcase_31 | AC | 1,547 ms
21,472 KB |
testcase_32 | AC | 3 ms
6,816 KB |
testcase_33 | AC | 193 ms
6,816 KB |
testcase_34 | AC | 9 ms
6,820 KB |
testcase_35 | AC | 2 ms
6,820 KB |
testcase_36 | AC | 115 ms
6,820 KB |
testcase_37 | AC | 49 ms
6,820 KB |
testcase_38 | AC | 412 ms
10,944 KB |
testcase_39 | AC | 20 ms
6,820 KB |
ソースコード
#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE /* #define SUBMIT_ONLY */ #define DEBUG_OUTPUT #define SAMPLE_CHECK A #endif #ifdef INCLUDE_MAIN VO Solve() { CIN( ll , N , K , L , P ); CIN_A( ll , 0 , N , A , B ); auto count = CountingNegativeCostBoundedValueSumBoundedSizeKnapsack( B , { T2<ll>{ P , ValueSumBound( B ) } } , A , L , {0,K} ); ll answer = 0; FOREQ( k , 0 , K ){ answer += count[k][0]; }; RETURN( answer ); } REPEAT_MAIN(1); #else /* INCLUDE_MAIN */ #ifdef INCLUDE_SUB /* COMPAREに使用。圧縮時は削除する。*/ MP Naive( const int& N , const int& M , const int& K , const bool& experiment = false ) { MP answer{}; return answer; } /* COMPAREに使用。圧縮時は削除する。*/ MP Answer( const ll& N , const ll& M , const ll& K ) { MP answer{}; return answer; } /* 圧縮時は中身だけ削除する。*/ IN VO Experiment() { /* // 1変数 ../Contest/Template/Experiment/OneVariable.txt */ /* // 2変数 ../Contest/Template/Experiment/TwoVariable.txt */ /* // 3変数 ../Contest/Template/Experiment/ThreeVariable.txt */ } /* 圧縮時は中身だけ削除する。*/ IN VO SmallTest() { /* // 数 ../Contest/Template/SmallTest/Number.txt */ /* // 配列 ../Contest/Template/SmallTest/Array.txt */ /* // 順列 ../Contest/Template/SmallTest/Permutation.txt */ /* // 文字列 ../Contest/Template/SmallTest/String.txt */ /* // グリッド ../Contest/Template/SmallTest/Grid.txt */ /* // グラフ ../Contest/Template/SmallTest/Graph.txt */ /* // 重み付きグラフ ../Contest/Template/SmallTest/WeightedGraph.txt */ /* // 区間クエリ ../Contest/Template/SmallTest/IntervalQuery.txt */ } /* 圧縮時は中身だけ削除する。*/ IN VO RandomTest( const int& test_case_num ) { /* // 数 ../Contest/Template/SmallTest/Number.txt */ /* // 配列 ../Contest/Template/SmallTest/Array.txt */ /* // 順列 ../Contest/Template/SmallTest/Permutation.txt */ /* // 文字列 ../Contest/Template/SmallTest/String.txt */ /* // グリッド ../Contest/Template/SmallTest/Grid.txt */ /* // グラフ ../Contest/Template/SmallTest/Graph.txt */ /* // 重み付きグラフ ../Contest/Template/SmallTest/WeightedGraph.txt */ /* // 区間クエリ ../Contest/Template/SmallTest/IntervalQuery.txt */ /* // 多種クエリ ../Contest/Template/SmallTest/MultiTypeQuery.txt */ REPEAT( test_case_num ){ } } #define INCLUDE_MAIN #include __FILE__ #else /* INCLUDE_SUB */ #ifdef INCLUDE_LIBRARY /* VVV 常設でないライブラリは以下に挿入する。*/ /* // BFS ../Contest/Template/Library/BFS.txt */ /* // BIT ../Contest/Template/Library/BIT.txt */ /* // CoordinateCompress ../Contest/Template/Library/CoordinateCompress.txt */ /* // DFS ../Contest/Template/Library/DFS.txt */ /* // DifferenceSequence ../Contest/Template/Library/DifferenceSequence.txt */ /* // Dijkstra ../Contest/Template/Library/Dijkstra.txt */ /* // Divisor ../Contest/Template/Library/Divisor.txt */ /* // Knapsack ../Contest/Template/Library/Knapsack.txt */ /* // Matrix ../Contest/Template/Library/Matrix.txt */ /* // Set ../Contest/Template/Library/Set.txt */ /* // Polynomial ../Contest/Template/Library/Polynomial.txt */ /* // SqrtDecomposition ../Contest/Template/Library/SqrtDecomposition.txt */ /* // UnionFind ../Contest/Template/Library/UnionFind.txt */ #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Combinatorial/KnapsackProblem/Negative/Cost/Counting/BoundedSize/a_Body.hpp" #else #define SFINAE_FOR_BIT_BS enable_if_t<is_invocable_r_v<bool,F,U,int>>* TE <TY U,TY ABELIAN_GROUP>CL AbstractBIT{PU:ABELIAN_GROUP m_M;int m_SZ;VE<U> m_fenwick;int m_PW;IN AbstractBIT(ABELIAN_GROUP M,CRI SZ = 0);IN AbstractBIT(ABELIAN_GROUP M,CO VE<U>& a);TE <TY...Args> IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);VO Add(CRI i,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i);IN U Get(CRI i);IN CO U& LSBSegmentSum(CRI j)CO;U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> int Search(CO F& f);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> IN int Search(CRI i_start,CO F& f);IN int Search(CO U& u);IN int Search(CRI i_start,CO U& u);IN VO COruct();};TE <TY ABELIAN_GROUP,TY...Args> AbstractBIT(ABELIAN_GROUP M,CO Args&... args)-> AbstractBIT<inner_t<ABELIAN_GROUP>,ABELIAN_GROUP>;TE <TY U = ll>CL BIT:PU AbstractBIT<U,AdditiveGroup<U>>{PU:TE <TY...Args> IN BIT(CO Args&... args);};TE <TY U> BIT(CO VE<U>& a)-> BIT<U>; TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();}TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CO VE<U>& a):m_M(MO(M)),m_SZ(a.SZ()),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j = m_M.Sum(MO(fenwick_j),m_fenwick[i]);i -=(i & -i);}}}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::COruct(){ST_AS(is_same_v<U,inner_t<ABELIAN_GROUP>>);WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY U> TE <TY...Args> IN BIT<U>::BIT(CO Args&... args):AbstractBIT<U,AdditiveGroup<U>>(AdditiveGroup<U>(),args...){}TE <TY U,TY ABELIAN_GROUP> TE <TY...Args> IN VO AbstractBIT<U,ABELIAN_GROUP>::Initialise(CO Args&... args){AbstractBIT<U,ABELIAN_GROUP> temp{m_M,args...};m_SZ = temp.m_SZ;m_fenwick = MO(temp.m_fenwick);m_PW = temp.m_PW;}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE <TY U,TY ABELIAN_GROUP>VO AbstractBIT<U,ABELIAN_GROUP>::Add(CRI i,CO U& u){int j = i + 1;WH(j <= m_SZ){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),u);j +=(j & -j);}RE;}TE <TY U,TY ABELIAN_GROUP> IN CRI AbstractBIT<U,ABELIAN_GROUP>::SZ()CO NE{RE m_SZ;}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::OP[](CRI i){AS(0 <= i && i < m_SZ);RE IntervalSum(i,i);}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::Get(CRI i){RE OP[](i);}TE <TY U,TY ABELIAN_GROUP> IN CO U& AbstractBIT<U,ABELIAN_GROUP>::LSBSegmentSum(CRI j)CO{AS(0 < j && j <= m_SZ);RE m_fenwick[j];}TE <TY U,TY ABELIAN_GROUP>U AbstractBIT<U,ABELIAN_GROUP>::InitialSegmentSum(CRI i_final){U sum = m_M.Zero();int j = min(i_final + 1,m_SZ);WH(j > 0){sum = m_M.Sum(MO(sum),m_fenwick[j]);j -= j & -j;}RE sum;}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));}TE <TY U,TY ABELIAN_GROUP> TE <TY F,SFINAE_FOR_BIT_BS>int AbstractBIT<U,ABELIAN_GROUP>::Search(CO F& f){int j = 0;int PW = m_PW;U sum = m_M.Zero();U sum_next = sum;WH(PW > 0){int j_next = j | PW;if(j_next <= m_SZ){sum_next = m_M.Sum(MO(sum_next),m_fenwick[j_next]);if(f(sum_next,j_next - 1)){sum_next = sum;}else{sum = sum_next;j = j_next;}}PW >>= 1;}RE j;}TE <TY U,TY ABELIAN_GROUP> TE <TY F,SFINAE_FOR_BIT_BS> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CRI i_start,CO F& f){CO U u_inv = m_M.Inverse(InitialSegmentSum(i_start - 1));RE max(i_start,Search([&](CO U& sum,CRI i){RE i_start <= i && f(m_M.Sum(u_inv,sum),i);}));}TE <TY U,TY ABELIAN_GROUP> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CO U& u){RE Search([&](CO U& sum,CRI){RE !(sum < u);});}TE <TY U,TY ABELIAN_GROUP> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CRI i_start,CO U& u){RE max(i_start,Search(m_M.Sum(InitialSegmentSum(i_start - 1),u)));}TE <CL Traits,TY U,TY ABELIAN_GROUP> IN OS& OP<<(OS& os,AbstractBIT<U,ABELIAN_GROUP>& bit){auto&& SZ = bit.SZ();for(int i = 0;i < SZ;i++){(i == 0?os:os << " ")<< bit[i];}RE os;} TE <TY BLS,TY INT>CL IteratorOfBoundedLineSubset{PU:BLS* m_p;INT m_i;IN IteratorOfBoundedLineSubset(BLS& S,INT i);IN bool OP==(CO IteratorOfBoundedLineSubset<BLS,INT>& IT)CO NE;IN bool OP!=(CO IteratorOfBoundedLineSubset<BLS,INT>& IT)CO NE;IN INT OP*()CO;IN IteratorOfBoundedLineSubset<BLS,INT>& OP++();IN IteratorOfBoundedLineSubset<BLS,INT> OP++(int);IN IteratorOfBoundedLineSubset<BLS,INT>& OP--();IN IteratorOfBoundedLineSubset<BLS,INT> OP--(int);IN VO Next();IN VO Prev();IN pair<INT,INT> ConnectedComponent()CO;IN IteratorOfBoundedLineSubset<BLS,INT>& erase_from(BLS& S);}; TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT>::IteratorOfBoundedLineSubset(BLS& S,INT i):m_p(&S),m_i(MO(i)){}TE <TY BLS,TY INT> IN bool IteratorOfBoundedLineSubset<BLS,INT>::OP==(CO IteratorOfBoundedLineSubset<BLS,INT>& IT)CO NE{RE m_p == IT.m_p && m_i == IT.m_i;}TE <TY BLS,TY INT> IN bool IteratorOfBoundedLineSubset<BLS,INT>::OP!=(CO IteratorOfBoundedLineSubset<BLS,INT>& IT)CO NE{RE !(*TH == IT);}TE <TY BLS,TY INT> IN INT IteratorOfBoundedLineSubset<BLS,INT>::OP*()CO{RE m_i;}TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT>& IteratorOfBoundedLineSubset<BLS,INT>::OP++(){AS(m_i <= m_p->ubound());RE *TH = m_p->MinimumGt(m_i);}TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT> IteratorOfBoundedLineSubset<BLS,INT>::OP++(int){auto IT = *TH;++(*TH);RE IT;}TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT>& IteratorOfBoundedLineSubset<BLS,INT>::OP--(){AS(m_p->BE().m_i <= m_i);RE *TH = m_p->MaximumLt(m_i);}TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT> IteratorOfBoundedLineSubset<BLS,INT>::OP--(int){auto IT = *TH;--(*TH);RE IT;}TE <TY BLS,TY INT> IN VO IteratorOfBoundedLineSubset<BLS,INT>::Next(){AS(m_i < m_p->ubound());CO INT r = m_p->RightEndPointOf(m_i);*TH = m_i <= r?m_p->MinimumGt(r):m_p->EN();}TE <TY BLS,TY INT> IN VO IteratorOfBoundedLineSubset<BLS,INT>::Prev(){AS(m_p->lbound()< m_i);CO INT l = m_p->LeftEndPointOf(m_i);*TH = l <= m_i?m_p->MaximumLt(l):m_p->EN();}TE <TY BLS,TY INT> IN pair<INT,INT> IteratorOfBoundedLineSubset<BLS,INT>::ConnectedComponent()CO{RE m_p->ConnectedComponentOf(m_i);}TE <TY BLS,TY INT> IN IteratorOfBoundedLineSubset<BLS,INT>& IteratorOfBoundedLineSubset<BLS,INT>::erase_from(BLS& S){AS(&S == m_p);auto IT_copy =(*TH)++;S.erase(IT_copy);RE *TH;} TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR>CL VirtualBoundedLineSubset{PU:INT m_lbound;INT m_ubound;DATA_STR<INT> m_ds;US iterator = IteratorOfBoundedLineSubset<VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>,INT>;IN VO insert(CO INT& i);IN VO erase(CO INT& i)NE;IN iterator& erase(iterator& IT);IN int count(CO INT& i)NE;bool find(CO INT& i)NE;IN int InitialSegmentCount(CO INT& i_final);IN int IntervalCount(CO INT& i_start,CO INT& i_final);IN bool empty()NE;IN iterator BE()NE;IN iterator EN()NE;IN iterator MaximumLeq(CO INT& i,CRI k = 0);IN iterator MaximumLt(CO INT& i,CRI k = 0);IN iterator MinimumGeq(CO INT& i,CRI k = 0);IN iterator MinimumGt(CO INT& i,CRI k = 0);IN INT Maximum(CRI k = 0);IN INT Minimum(CRI k = 0);INT RightEndPointOf(CO INT& i,int d = -1,int comp_minus = -1,CO bool& in = false);INT LeftEndPointOf(CO INT& i,int d = -1,int comp_minus = -1,CO bool& in = false);IN pair<INT,INT> ConnectedComponentOf(CO INT& i,bool in = false);VE<pair<INT,INT>> GetConnectedComponent()NE;IN CO INT& lbound()CO NE;IN CO INT& ubound()CO NE;VI bool InRange(CO INT& i)= 0;VI RET_NOR Normalise(CO INT& i)= 0;VI RET_DEN Denormalise(CO decay_t<RET_NOR>& d)= 0;}; TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN VO VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::insert(CO INT& i){AS(InRange(i));m_ds.Set(Normalise(i),1);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN VO VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::erase(CO INT& i)NE{if(InRange(i)){m_ds.Set(Normalise(i),0);}}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator& VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::erase(TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator& IT){RE IT.erase_from(*TH);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN int VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::count(CO INT& i)NE{RE InRange(i)?m_ds[Normalise(i)]:0;}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN bool VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::find(CO INT& i)NE{RE count(i)> 0;}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN int VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::InitialSegmentCount(CO INT& i_final){AS(InRange(i_final));RE m_ds.InitialSegmentSum(Normalise(i_final));}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN int VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::IntervalCount(CO INT& i_start,CO INT& i_final){AS(InRange(i_start)&& InRange(i_final));RE m_ds.IntervalSum(Normalise(i_start),Normalise(i_final));}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN bool VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::empty()NE{RE InitialSegmentCount(m_ubound)== 0;}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::BE()NE{RE MinimumGeq(m_lbound);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::EN()NE{RE TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator(*TH,m_ubound + 1);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::MaximumLeq(CO INT& i,CRI k){CO INT num = InitialSegmentCount(i)- k;CO INT l = Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE num <= sum;}));RE num >= 0 && find(l)?TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator{*TH,l}:EN();}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::MaximumLt(CO INT& i,CRI k){CO int d = Normalise(i);if(d == 0){RE EN();}RE MaximumLeq(Denormalise(d - 1),k);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::MinimumGeq(CO INT& i,CRI k){CO int c = count(i);RE c > k?TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator{*TH,i}:MinimumGt(i,k - c);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::MinimumGt(CO INT& i,CRI k){CO INT num = InitialSegmentCount(i)+ k;CO INT r = Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE num < sum;}));RE find(r)?TY VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::iterator{*TH,r}:EN();}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN INT VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::Maximum(CRI k){RE MaximumLeq(m_ubound,k);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN INT VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::Minimum(CRI k){RE MinimumGeq(m_lbound,k);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR>INT VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::RightEndPointOf(CO INT& i,int d,int comp_minus,CO bool& in){if(!in && !find(i)){RE i - 1;}if(d == -1){d = Normalise(i);comp_minus = d - InitialSegmentCount(i);}RE Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE d <= j && sum + comp_minus < j;})- 1);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR>INT VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::LeftEndPointOf(CO INT& i,int d,int comp_minus,CO bool& in){if(!in && !find(i)){RE i + 1;}if(d == -1){d = Normalise(i);comp_minus = d - InitialSegmentCount(i);}RE Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE d <= j ||(find(j)&& sum + comp_minus == j);}));}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN pair<INT,INT> VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::ConnectedComponentOf(CO INT& i,bool in){if(!in){in = find(i);}CO int d = Normalise(i),comp_minus = d - InitialSegmentCount(i);RE{LeftEndPointOf(i,d,comp_minus,in),RightEndPointOf(i,d,comp_minus,in)};}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR>VE<pair<INT,INT>> VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::GetConnectedComponent()NE{VE<pair<INT,INT>> AN{};INT r;for(auto IT = BE();*IT <= m_ubound;IT = MinimumGt(r)){AN.push_back({*IT,r = RightEndPointOf(*IT)});}RE AN;}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN CO INT& VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::lbound()CO NE{RE m_lbound;}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN CO INT& VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>::ubound()CO NE{RE m_ubound;} TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR>CL AbstractBoundedLineMultiSubset:VI PU VirtualBoundedLineSubset<INT,RET_NOR,RET_DEN,DATA_STR>{PU:IN VO insert(CO INT& i,CO INT& c = 1);IN VO erase(CO INT& i,CO INT& c = 1);IN VO EraseAll(CO INT& i);INT RightEndPointOf(CO INT& i,CO bool& in = false)= delete;INT LeftEndPointOf(CO INT& i,CO bool& in = false)= delete;IN pair<INT,INT> ConnectedComponentOf(CO INT& i,bool in = false)= delete;VE<pair<INT,INT>> GetConnectedComponent()NE = delete;}; TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN VO AbstractBoundedLineMultiSubset<INT,RET_NOR,RET_DEN,DATA_STR>::insert(CO INT& i,CO INT& c){AS(TH->InRange(i)&& c >= 0);TH->m_ds.Add(TH->Normalise(i),c);}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN VO AbstractBoundedLineMultiSubset<INT,RET_NOR,RET_DEN,DATA_STR>::erase(CO INT& i,CO INT& c){AS(c >= 0);if(TH->InRange(i)){TH->m_ds.Add(TH->Normalise(i),-c);}}TE <TY INT,TY RET_NOR,TY RET_DEN,TE <TY...> TY DATA_STR> IN VO AbstractBoundedLineMultiSubset<INT,RET_NOR,RET_DEN,DATA_STR>::EraseAll(CO INT& i){if(TH->InRange(i)){TH->m_ds.Set(TH->Normalise(i),0);}} TE <TY INT,TE <TY...> TY DATA_STR>CL AbstractCompressedSortedSet:VI PU VirtualBoundedLineSubset<INT,CRI,CO INT&,DATA_STR>{PU:VE<INT> m_sorted_coord;Map<INT,int> m_sorted_coord_inv;IN AbstractCompressedSortedSet(CO VE<INT>& query);IN bool InRange(CO INT& i);IN CRI Normalise(CO INT& i);IN CO INT& Denormalise(CRI d);}; TE <TY INT>US CompressedSortedSet = AbstractCompressedSortedSet<INT,BIT>; TE <TY INT,TE <TY...> TY DATA_STR> IN AbstractCompressedSortedSet<INT,DATA_STR>::AbstractCompressedSortedSet(CO VE<INT>& query):m_sorted_coord(),m_sorted_coord_inv(){set<INT> S{};for(auto& i:query){S.insert(i);}m_sorted_coord.reserve(S.SZ());for(auto& i:S){m_sorted_coord_inv[i]= m_sorted_coord.SZ();m_sorted_coord.push_back(i);}if(m_sorted_coord.empty()){TH->m_lbound = 0;TH->m_ubound = -1;}else{TH->m_lbound = m_sorted_coord.front();TH->m_ubound = m_sorted_coord.back();}TH->m_ds.Initialise(int(S.SZ()));}TE <TY INT,TE <TY...> TY DATA_STR> IN bool AbstractCompressedSortedSet<INT,DATA_STR>::InRange(CO INT& i){RE m_sorted_coord_inv.count(i)> 0;}TE <TY INT,TE <TY...> TY DATA_STR> IN CRI AbstractCompressedSortedSet<INT,DATA_STR>::Normalise(CO INT& i){RE m_sorted_coord_inv[i];}TE <TY INT,TE <TY...> TY DATA_STR> IN CO INT& AbstractCompressedSortedSet<INT,DATA_STR>::Denormalise(CRI d){RE m_sorted_coord[d];} TE <TY INT>CL CompressedSortedMultiSet:PU CompressedSortedSet<INT>,PU AbstractBoundedLineMultiSubset<INT,CRI,CO INT&,BIT>{PU:IN CompressedSortedMultiSet(CO VE<INT>& query);}; TE <TY INT> IN CompressedSortedMultiSet<INT>::CompressedSortedMultiSet(CO VE<INT>& query):CompressedSortedSet<INT>(query){} TE <TY U,TY COMM_MONOID>U AbstractValueSumBound(COMM_MONOID M,CO VE<U>& value){CO U& one = M.One();U AN = one;for(auto& v:value){one < v?AN = M.Product(MO(AN),v):AN;}RE AN;}TE <TY INT> IN INT ValueSumBound(CO VE<INT>& value){RE AbstractValueSumBound(AdditiveMonoid<INT>(),value);} TE <TY INT,TY U,TY COMM_MONOID>VE<VE<ll>> AbstractCountingNegativeCostBoundedValueSumBoundedSizeKnapsack(COMM_MONOID M,CO VE<INT>& value,CO VE<pair<INT,INT>>& value_sum_bound,CO VE<U>& cost,CO U& cost_sum_bound,CO pair<int,int>& SZ_bound){CO int N = value.SZ();AS(int(cost.SZ())== N);auto&[SZ_min,SZ_max]= SZ_bound;AS(0 <= SZ_min && SZ_min <= SZ_max && SZ_max <= N);CO int N_half = N >> 1;CO int SZ_max_half[2]={min(SZ_max,N_half),min(SZ_max,N - N_half)};CO U& one = M.One();VE<map<pair<U,INT>,int>> count[2]={};for(int b = 0;b < 2;b++){CO int i_min = b == 0?0:N_half;CO int i_ulim = b == 0?N_half:N;count[b].resize(SZ_max_half[b]+ 1);count[b][0][{one,0}]= 1;for(int i = i_min;i < i_ulim;i++){for(int SZ = SZ_max_half[b]- 1;SZ >= 0;SZ--){for(auto&[key,num]:count[b][SZ]){count[b][SZ+1][{M.Product(key.first,cost[i]),key.second + value[i]}]+= num;}}}}CO int Q = value_sum_bound.SZ();VE AN(SZ_max + 1,VE<ll>(Q));for(int SZ_0 = 0;SZ_0 <= SZ_max_half[0];SZ_0++){CO int SZ_1_max = min(SZ_max_half[1],SZ_max - SZ_0);for(int SZ_1 = max(0,SZ_min - SZ_0);SZ_1 <= SZ_1_max;SZ_1++){CO int SZ = SZ_0 + SZ_1;auto IT_0 = count[0][SZ_0].rBE(),EN_0 = count[0][SZ_0].rend();auto IT_1 = count[1][SZ_1].BE(),EN_1 = count[1][SZ_1].EN();VE<INT> query{};WH(IT_0 != EN_0){WH(IT_1 != EN_1 && M.Product(IT_0->first.first,IT_1->first.first)<= cost_sum_bound){query.push_back(IT_1->first.second);++IT_1;}for(int q = 0;q < Q;q++){auto&[l,r]= value_sum_bound[q];query.push_back(l - IT_0->first.second);query.push_back(r - IT_0->first.second);}++IT_0;}CompressedSortedMultiSet<ll> S{query};query.clear();IT_0 = count[0][SZ_0].rBE();IT_1 = count[1][SZ_1].BE();WH(IT_0 != EN_0){WH(IT_1 != EN_1 && M.Product(IT_0->first.first,IT_1->first.first)<= cost_sum_bound){S.insert(IT_1->first.second,IT_1->second);++IT_1;}for(int q = 0;q < Q;q++){auto&[l,r]= value_sum_bound[q];AN[SZ][q]+= ll(IT_0->second)* S.IntervalCount(l - IT_0->first.second,r - IT_0->first.second);}++IT_0;}}}RE AN;}TE <TY INT1,TY INT2> IN VE<VE<ll>> CountingNegativeCostBoundedValueSumBoundedSizeKnapsack(CO VE<INT1>& value,CO VE<pair<INT1,INT1>>& value_sum_bound,CO VE<INT2>& cost,CO INT2& cost_sum_bound,CO pair<int,int>& SZ_bound){RE AbstractCountingNegativeCostBoundedValueSumBoundedSizeKnapsack(AdditiveMonoid<INT2>(),value,value_sum_bound,cost,cost_sum_bound,SZ_bound);} #endif /* AAA 常設でないライブラリは以上に挿入する。*/ #define INCLUDE_SUB #include __FILE__ #else /* INCLUDE_LIBRARY */ #ifdef DEBUG #define _GLIBCXX_DEBUG #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #endif #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define CERR( ... ) #define CERRNS( ... ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) SET( A ) #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #include <bits/stdc++.h> using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = 0.0 , current_time = 0.0; int loop_count = 0 #define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define OUTPUT_ARRAY( C , I , N , A ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , I , N ){ C << A[VARIABLE_FOR_OUTPUT_ARRAY] << " \n"[VARIABLE_FOR_OUTPUT_ARRAY==(N)-1]; } #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , true ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream<char,Traits> #define OS basic_ostream<char,Traits> #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin /* 型のエイリアス */ #define decldecay_t(VAR)decay_t<decltype(VAR)> TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...)); TE <TY T> US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE <TY INT> US T2 = pair<INT,INT>; TE <TY INT> US T3 = tuple<INT,INT,INT>; TE <TY INT> US T4 = tuple<INT,INT,INT,INT>; US path = pair<int,ll>; /* VVV 常設ライブラリは以下に挿入する。*/ #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp" #else /* BinarySearch (2KB)*/ /* EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。*/ #define BS(AN,MINIMUM,MAXIMUM,EXPRESSION,DESIRED_INEQUALITY,CO_TARGET,INEQUALITY_FOR_CHECK,UPDATE_U,UPDATE_L,UPDATE_AN)ST_AS(! is_same<decldecay_t(CO_TARGET),uint>::value && ! is_same<decldecay_t(CO_TARGET),ull>::value);ll AN = MINIMUM;{ll AN ## _L = MINIMUM;ll AN ## _R = MAXIMUM;AN = UPDATE_AN;ll EXPRESSION_BS;CO ll CO_TARGET_BS =(CO_TARGET);ll DIFFERENCE_BS;WH(AN ## _L < AN ## _R){DIFFERENCE_BS =(EXPRESSION_BS =(EXPRESSION))- CO_TARGET_BS;if(DIFFERENCE_BS INEQUALITY_FOR_CHECK 0){AN ## _R = UPDATE_U;}else{AN ## _L = UPDATE_L;}AN = UPDATE_AN;}if(AN ## _L > AN ## _R || !((EXPRESSION)DESIRED_INEQUALITY CO_TARGET_BS)){AN = MAXIMUM + 1;}} /* 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。*/ #define BS1(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,>=,AN,AN + 1,(AN ## _L + AN ## _R)/ 2) /* 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。*/ #define BS2(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,>,AN - 1,AN,(AN ## _L + 1 + AN ## _R)/ 2) /* 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。*/ #define BS3(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,<,AN - 1,AN,(AN ## _L + 1 + AN ## _R)/ 2) /* 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。*/ #define BS4(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,<=,AN,AN + 1,(AN ## _L + AN ## _R)/ 2) /* TwoPoitnterApproach (2KB)*/ /* VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。 ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を {INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。 ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが 条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの 更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの 更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる) ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合 auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; }; auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } }; TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) ); とすればtuple<int,int,ll>値配列intervalに{左端,右端,総和}の列が格納される。 VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが 大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。*/ #define TPA(AN,VAR_TPA,INIT,CONTINUE_CONDITION,UPDATE_L,UPDATE_R,ON_CONDITION,INFO_init)VE<tuple<decldecay_t(INIT),decldecay_t(INIT),decldecay_t(INFO_init)>> AN{};{auto init_TPA = INIT;decldecay_t(AN.front())AN ## _temp ={init_TPA,init_TPA,INFO_init};auto AN ## _prev = AN ## _temp;auto& VAR_TPA ## _L = get<0>(AN ## _temp);auto& VAR_TPA ## _R = get<1>(AN ## _temp);auto& VAR_TPA ## _info = get<2>(AN ## _temp);bool on_TPA_prev = false;WH(true){bool continuing = CONTINUE_CONDITION;bool on_TPA = continuing &&(ON_CONDITION);if(on_TPA_prev && ! on_TPA){AN.push_back(AN ## _prev);}if(continuing){if(on_TPA || VAR_TPA ## _L == VAR_TPA ## _R){AN ## _prev = AN ## _temp;UPDATE_R;}else{UPDATE_L;}}else{break;}on_TPA_prev = on_TPA;}} /* Random (1KB)*/ ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} /* Set (1KB)*/ #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;}; TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>; /* Tuple (5KB)*/ #define DF_OF_AR_FOR_TUPLE(OPR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP OPR ## =(V<T,U>& t0,CO V<T,U>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP OPR ## =(tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP OPR ## =(tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE <TY ARG,TY T,TY U,TE <TY...> TY V> IN auto OP OPR ## =(V<T,U>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V> IN tuple<T,U,V>& OP OPR ## =(tuple<T,U,V>& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP OPR ## =(tuple<T,U,V,W>& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE <TE <TY...> TY V,TY...ARGS,TY ARG> IN auto OP OPR(CO V<ARGS...>& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP INCR(V<T,U>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP INCR(tuple<T,U,V>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP INCR(tuple<T,U,V,W>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE <CL Traits,TY T> IN IS& OP>>(IS& is,tuple<T>& arg){RE is >> get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP>>(IS& is,V<T,U>& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN IS& OP>>(IS& is,tuple<T,U,V>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN IS& OP>>(IS& is,tuple<T,U,V,W>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE <CL Traits,TY T> IN OS& OP<<(OS& os,CO tuple<T>& arg){RE os << get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP<<(OS& os,CO V<T,U>& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN OS& OP<<(OS& os,CO tuple<T,U,V>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN OS& OP<<(OS& os,CO tuple<T,U,V,W>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);TE <TY T,TY U,TE <TY...> TY V> IN auto OP-(CO V<T,U>& t)-> decltype(get<0>(t),t){RE{-get<0>(t),-get<1>(t)};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP-(CO tuple<T,U,V>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP-(CO tuple<T,U,V,W>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t),-get<3>(t)};}DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); #define DF_OF_HASH_FOR_TUPLE(PAIR)TE <TY T,TY U> IN size_t hash<PAIR<T,U>>::OP()(CO PAIR<T,U>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<T> h0;ST CO hash<U> h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} TE <TY T> DC_OF_HASH(tuple<T>);TE <TY T,TY U> DC_OF_HASH(pair<T,U>);TE <TY T,TY U> DC_OF_HASH(tuple<T,U>);TE <TY T,TY U,TY V> DC_OF_HASH(tuple<T,U,V>);TE <TY T,TY U,TY V,TY W> DC_OF_HASH(tuple<T,U,V,W>); TE <TY T> IN size_t hash<tuple<T>>::OP()(CO tuple<T>& n)CO{ST CO hash<T> h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE <TY T,TY U,TY V> IN size_t hash<tuple<T,U,V>>::OP()(CO tuple<T,U,V>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<V> h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE <TY T,TY U,TY V,TY W> IN size_t hash<tuple<T,U,V,W>>::OP()(CO tuple<T,U,V,W>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<pair<V,W>> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} /* Vector (2KB)*/ #define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} #define DF_OF_AR_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE <TY T> IN V<T>& OP OPR ## =(V<T>& a0,CO V<T>& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE <TY T,TY U> IN V<T> OP OPR(V<T> a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE <TY T> IN V<T>& OP INCR(V<T>& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE <TY T> IN V<T> OP*(CO T& scalar,V<T> v){for(auto& t:v){t *= scalar;}RE MO(v);} DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE <TY V> IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}TE <TY T> VO Sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE <TY T> IN VE<int> IndexSort(CO VE<T>& a,CO bool& reversed = false){auto index = id<int>(a.SZ());if(reversed){sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[j]< a[i];});}else{sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[i]< a[j];});}RE index;} /* Map (1KB)*/ #define DF_OF_AR_FOR_MAP(MAP,OPR)TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a,CO pair<T,U>& v){a[v.first]OPR ## = v.second;RE a;}TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a0,CO MAP<T,U>& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE <TY T,TY U,TY ARG> IN MAP<T,U> OP OPR(MAP<T,U> a,CO ARG& arg){RE MO(a OPR ## = arg);} #define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%); TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>; DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map); /* StdStream (2KB)*/ TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCout(os << forward<Arg1>(arg1)<< " ",forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY Arg> IN OS& VariadicCoutNonSep(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCoutNonSep(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCoutNonSep(os << forward<Arg1>(arg1),forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY ARRAY> IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,ARRAY&& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;} /* Module (6KB)*/ #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();} TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);}; TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>& AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){} TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;} TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TY MAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMA magma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);}; TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY U,TY MAGMA> IN U RegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} /* Graph (5KB)*/ TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p));}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} /* Grid (2KB)*/ #define SET_GRID H_minus = H - 1;W_minus = W - 1;HW = ll(H)* W #define SET_HW(h,w)H = h;W = w;SET_GRID #define CIN_HW SET(H,W);SET_GRID TE <TY E>CL GridGraph:PU EnumerationGraph<T2<int>,T2<int>(&)(CRI),int(&)(CO T2<int>&),E>{PU:IN GridGraph(E e);};int H,W,H_minus,W_minus;ll HW;VE<string> grid;char walkable = '.',unwalkable = '#'; IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}TE <TY E> IN GridGraph<E>::GridGraph(E e):EnumerationGraph<T2<int>,T2<int>(&)(CRI),int(&)(CO T2<int>&),E>(HW,EnumHW,EnumHW_inv,MO(e)){AS(HW >> 31 == 0 && H * W == HW);}VE<T2<int>> EdgeOnGrid(CO T2<int>& v){VE<T2<int>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i > 0 && grid[i-1][j]== walkable){AN.push_back({i-1,j});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({i+1,j});}if(j > 0 && grid[i][j-1]== walkable){AN.push_back({i,j-1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({i,j+1});}}RE AN;}VE<pair<T2<int>,ll>> WEdgeOnGrid(CO T2<int>& v){VE<pair<T2<int>,ll>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i>0 && grid[i-1][j]== walkable){AN.push_back({{i-1,j},1});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({{i+1,j},1});}if(j>0 && grid[i][j-1]== walkable){AN.push_back({{i,j-1},1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({{i,j+1},1});}}RE AN;}IN VO SetWallStringOnGrid(){grid.resize(H);for(int i = 0;i < H;i++){SET(grid[i]);AS(int(grid[i].SZ())== W);}}CO string direction="URDL";IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i < k?2:i > k?0:j < h?1:(AS(j > h),3);}IN int DirectionNumberOnGrid(CO T2<int>& v,CO T2<int>& w){auto&[i,j]= v;auto&[k,h]= w;RE DirectionNumberOnGrid(i,j,k,h);}IN int DirectionNumberOnGrid(CRI v,CRI w){RE DirectionNumberOnGrid(EnumHW(v),EnumHW(w));}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0 <= n && n<4);RE n ^ 2;} /* ConstexprModulo (7KB)*/ CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE <uint M,TY INT> CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}; #define SFINAE_FOR_MOD enable_if_t<is_COructible_v<uint,decay_t<T>>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T,SFINAE_FOR_MOD = nullptr> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);} TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T,SFINAE_FOR_MOD = nullptr> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>& FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;ST IN CE uint GetModulo()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;}; US MP = Mod<P>; TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T,SFINAE_FOR_MOD> CE Mod<M>::Mod(T n)NE:m_n(Residue<M>(MO(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(ll(MO(EX %= COants::g_M_minus))* COants::g_order_minus_1_neg %COants::g_M_minus):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < M);ST VE<Mod<M>> memory ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(DeRP(M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M));LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN CE uint Mod<M>::GetModulo()NE{RE M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN IS& OP>>(IS& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN OS& OP<<(OS& os,CO Mod<M>& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash<MOD>::OP()(CO MOD& n)CO{ST CO hash<decldecay_t(n.RP())> h;RE h(n.RP());} TE <uint M> DC_OF_HASH(Mod<M>); TE <uint M> DF_OF_HASH_FOR_MOD(Mod<M>); /* Loop (1KB)*/ TE <TY INT> bool NextLoop(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]< upper_limit[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoop(CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){RE NextLoop(index.SZ(),lower_bound,upper_limit,index);}TE <TY INT> bool NextLoopEq(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]<= upper_bound[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoopEq(CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){RE NextLoopEq(index.SZ(),lower_bound,upper_bound,index);} /* string (1KB)*/ TE <TY INT> IN char IntToChar(CO INT& i,CO char& c = 'a'){RE c + i;}TE <TY INT> IN INT CharToInt(CO char& i){RE i -(i < 'a'?'A':'a');}TE <TY INT>string ArrayToString(CO VE<INT>& A,CO char& c = 'a'){CO int N = A.SZ();string S(N,c);for(int i = 0;i < N;i++){S[i]= IntToChar<INT>(A[i],c);}RE S;}TE <TY INT>VE<INT> StringToArray(CO string& S){CO int N = S.SZ();VE<int> A(N);for(int i = 0;i < N;i++){A[i]= CharToInt<INT>(S[i]);}RE A;} #endif /* AAA 常設ライブラリは以上に挿入する。*/ #define INCLUDE_LIBRARY #include __FILE__ #endif /* INCLUDE_LIBRARY */ #endif /* INCLUDE_SUB */ #endif /* INCLUDE_MAIN */