結果

問題 No.2938 Sigma Sigma Distance Distance Problem
ユーザー noriaoki
提出日時 2024-10-18 22:11:08
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 58 ms / 2,000 ms
コード長 3,591 bytes
コンパイル時間 157 ms
コンパイル使用メモリ 82,456 KB
実行使用メモリ 67,348 KB
最終ジャッジ日時 2024-10-18 22:47:18
合計ジャッジ時間 3,127 ms
ジャッジサーバーID
(参考情報)
judge8 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://maspypy.com/segment-tree-%E3%81%AE%E3%81%8A%E5%8B%89%E5%BC%B71

class SegmentTree():
    def __init__(self, N: int, func, unit: int = 0):
        self.N = N
        self.X_unit = unit
        self.X = [self.X_unit] * (2*self.N)
        self.X_f = func

    def build(self, seq):
        for i, x in enumerate(seq, self.N):
            self.X[i] = x
        for i in range(self.N - 1, 0, -1):
            self.X[i] = self.X_f(self.X[i << 1], self.X[i << 1 | 1])

    def set_val(self, i, x):
        i += self.N
        self.X[i] = x
        while i > 1:
            i >>= 1
            self.X[i] = self.X_f(self.X[i << 1], self.X[i << 1 | 1])
    
    def get(self, i):
        return self.X[i + self.N]

    def fold(self, L, R):
        L += self.N
        R += self.N
        vL = self.X_unit
        vR = self.X_unit
        while L < R:
            if L & 1:
                vL = self.X_f(vL, self.X[L])
                L += 1
            if R & 1:
                R ^= 1
                vR = self.X_f(self.X[R], vR)
            L >>= 1
            R >>= 1
        return self.X_f(vL, vR)
    
    def fold_all(self):
        return self.X[1]
    
    def _search_right_root(self, L, f):
        R = self.N << 1
        vL = self.X_unit
        sR = []
        while L < R:
            if L & 1:
                if not f(self.X_f(vL, self.X[L])):
                    return vL, L
                vL = self.X_f(vL, self.X[L])
                L += 1
            if R & 1:
                R ^= 1
                sR.append(R)
            L >>= 1
            R >>= 1
        while sR:
            R = sR.pop()
            if not f(self.X_f(vL, self.X[R])):
                return vL, R
            vL = self.X_f(vL, self.X[R])
        return -1, self.N << 1
    
    def _search_left_root(self, R, f):
        L = self.N
        vR = self.X_unit
        sL = []
        while L < R:
            if L & 1:
                sL.append(L)
                L += 1
            if R & 1:
                R ^= 1
                if not f(self.X_f(self.X[R], vR)):
                    return vR, R
                vR = self.X_f(self.X[R], vR)
            L >>= 1
            R >>= 1
        while sL:
            L = sL.pop()
            if not f(self.X_f(self.X[L], vR)):
                return vR, L
            vR = self.X_f(self.X[L], vR)
        return -1, self.N

    def max_right(self, L, f):
        L += self.N
        vL, R = self._search_right_root(L, f)
        while R < self.N:
            R <<= 1
            if f(self.X_f(vL, self.X[R])):
                vL = self.X_f(vL, self.X[R])
                R |= 1
        return R - self.N

    def min_left(self, R, f):
        R += self.N
        vR, L = self._search_left_root(R, f)
        if L == self.N:
            return 0
        while L < self.N:
            L <<= 1
            L |= 1
            if f(self.X_f(self.X[L], vR)):
                vR = self.X_f(self.X[L], vR)
                L ^= 1
        return L + 1 - self.N

n = int(input())
a = list(map(int, input().split()))

s = SegmentTree(n, lambda x, y: (x[0]+y[0], x[1]+y[1]), (0, 0))
g = SegmentTree(n, lambda x, y: (x[0]+y[0], x[1]+y[1]), (0, 0))
g.build([(1, i) for i in range(n)])

a = sorted([(a[i], i) for i in range(n)])

ans = 0
for v, i in a:
    g.set_val(i, (0, 0))
    ans += i*v*s.fold(0, i)[0]
    ans -= v*s.fold(0, i)[1]
    ans += i*v*g.fold(i+1, n)[0]
    ans -= v*g.fold(i+1, n)[1]
    ans += v*s.fold(i+1, n)[1]
    ans -= i*v*s.fold(i+1, n)[0]
    ans += v*g.fold(0, i)[1]
    ans -= i*v*g.fold(0, i)[0]
    s.set_val(i, (1, i))
print(ans*2)
0