結果

問題 No.2944 Sigma Partition Problem
ユーザー lif4635lif4635
提出日時 2024-10-18 22:20:55
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,460 bytes
コンパイル時間 334 ms
コンパイル使用メモリ 82,860 KB
実行使用メモリ 242,720 KB
最終ジャッジ日時 2024-10-18 22:50:08
合計ジャッジ時間 6,411 ms
ジャッジサーバーID
(参考情報)
judge6 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 38 ms
60,964 KB
testcase_01 AC 136 ms
77,972 KB
testcase_02 AC 49 ms
62,548 KB
testcase_03 AC 50 ms
63,304 KB
testcase_04 AC 49 ms
63,500 KB
testcase_05 AC 48 ms
62,420 KB
testcase_06 AC 49 ms
62,820 KB
testcase_07 TLE -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

def II() -> int : return int(input())
def MI() -> int : return map(int, input().split())
def TI() -> tuple[int] : return tuple(MI())
def LI() -> list[int] : return list(MI())
class fenwick_tree():
    n=1
    data=[0 for i in range(n)]
    def __init__(self,N):
        self.n=N
        self.data=[0 for i in range(N)]
    def add(self,p,x):
        assert 0<=p<self.n,"0<=p<n,p={0},n={1}".format(p,self.n)
        p+=1
        while(p<=self.n):
            self.data[p-1]+=x
            p+=p& -p
    def sum(self,l,r):
        assert (0<=l and l<=r and r<=self.n),"0<=l<=r<=n,l={0},r={1},n={2}".format(l,r,self.n)
        return self.sum0(r)-self.sum0(l)
    def sum0(self,r):
        s=0
        while(r>0):
            s+=self.data[r-1]
            r-=r&-r
        return s

"""使われるであろうmod"""
MOD = 998244353
"""擬似的な虚数単位"""
_IMAG = 911660635
_IIMAG = 86583718
"""数論変換における回転因子の前計算"""
_rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)
_irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)
_rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
_irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)

def _fft(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = 0
    for le in range(0, h - 1, 2):
        p = 1 << (h - le - 2)
        rot = 1
        for s in range(1 << le):
            rot2 = rot * rot % MOD
            rot3 = rot2 * rot % MOD
            offset = s << (h - le)
            for i in range(p):
                a0 = a[i + offset]
                a1 = a[i + offset + p] * rot
                a2 = a[i + offset + p * 2] * rot2
                a3 = a[i + offset + p * 3] * rot3
                a1na3imag = (a1 - a3) % MOD * _IMAG
                a[i + offset] = (a0 + a2 + a1 + a3) % MOD
                a[i + offset + p] = (a0 + a2 - a1 - a3) % MOD
                a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MOD
                a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MOD
            rot = rot * _rate3[(~s & -~s).bit_length()] % MOD
    if h - le & 1:
        rot = 1
        for s in range(1 << (h - 1)):
            offset = s << 1
            l = a[offset]
            r = a[offset + 1] * rot
            a[offset] = (l + r) % MOD
            a[offset + 1] = (l - r) % MOD
            rot = rot * _rate2[(~s & -~s).bit_length()] % MOD


def _ifft(a):
    n = len(a)
    h = (n - 1).bit_length()
    le = h
    for le in range(h, 1, -2):
        p = 1 << (h - le)
        irot = 1
        for s in range(1 << (le - 2)):
            irot2 = irot * irot % MOD
            irot3 = irot2 * irot % MOD
            offset = s << (h - le + 2)
            for i in range(p):
                a0 = a[i + offset]
                a1 = a[i + offset + p]
                a2 = a[i + offset + p * 2]
                a3 = a[i + offset + p * 3]
                a2na3iimag = (a2 - a3) * _IIMAG % MOD
                a[i + offset] = (a0 + a1 + a2 + a3) % MOD
                a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MOD
                a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MOD
                a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MOD
            irot = irot * _irate3[(~s & -~s).bit_length()] % MOD
    if le & 1:
        p = 1 << (h - 1)
        for i in range(p):
            l = a[i]
            r = a[i + p]
            a[i] = l + r if l + r < MOD else l + r - MOD
            a[i + p] = l - r if l - r >= 0 else l - r + MOD


def ntt(a) -> None:
    if len(a) <= 1:
        return
    _fft(a)


def intt(a) -> None:
    if len(a) <= 1:
        return
    _ifft(a)
    iv = pow(len(a), MOD - 2, MOD)
    for i, x in enumerate(a):
        a[i] = x * iv % MOD


def multiply(s: list, t: list) -> list:
    n, m = len(s), len(t)
    l = n + m - 1
    if min(n, m) <= 60:
        a = [0] * l
        for i, x in enumerate(s):
            for j, y in enumerate(t):
                a[i + j] += x * y
        return [x % MOD for x in a]
    z = 1 << (l - 1).bit_length()
    a = s + [0] * (z - n)
    b = t + [0] * (z - m)
    _fft(a)
    _fft(b)
    for i, x in enumerate(b):
        a[i] = a[i] * x % MOD
    _ifft(a)
    a[l:] = []
    iz = pow(z, MOD - 2, MOD)
    return [x * iz % MOD for x in a]




mod = 998244353
q = II()
        
for i in range(q):
    t,n,k = MI()
    
    que = []
    
    for i in range(1,k+1):
        a = [0]*(n+1)
        
        for j in range(0,n+1,i):
            a[j] = 1
        que.append(a[:])
    
    while len(que) != 1:
        a = que.pop()
        b = que.pop()
        c = multiply(a,b)[:n+1]
        que.append(c)
    
    ans = que.pop()
    print(ans[-1])
        
        
        
    
    
0