結果

問題 No.2942 Sigma Music Game Level Problem
ユーザー atcoder8
提出日時 2024-10-18 22:32:13
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 839 ms / 6,000 ms
コード長 7,621 bytes
コンパイル時間 14,625 ms
コンパイル使用メモリ 378,332 KB
実行使用メモリ 29,568 KB
最終ジャッジ日時 2024-11-15 19:34:05
合計ジャッジ時間 26,849 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use fenwick_tree::FenwickTree;
use proconio::input;
const MAX: usize = 200000;
fn main() {
input! {
(n, q, _l0): (usize, usize, usize),
aa: [usize; n],
}
let mut count_ft = FenwickTree::<usize>::new(MAX + 1);
let mut sum_ft = FenwickTree::<usize>::new(MAX + 1);
for &a in &aa {
count_ft.add(a, 1);
sum_ft.add(a, a);
}
let mut ans = vec![];
for _ in 0..q {
input! {
qt: usize,
}
match qt {
1 => {
input! {
l: usize,
}
count_ft.add(l, 1);
sum_ft.add(l, l);
}
2 => {
input! {
(l, r): (usize, usize),
}
let count = count_ft.sum(l..=r);
let sum = sum_ft.sum(l..=r);
ans.push((count, sum));
}
3 => {
input! {
_m: usize,
}
}
_ => panic!(),
}
}
if ans.is_empty() {
println!("Not Found!");
} else {
for &(count, sum) in &ans {
println!("{} {}", count, sum);
}
}
}
pub mod fenwick_tree {
//! Processes the following query in `O(log(n))` time
//! for a sequence of numbers with `n` elements:
//! * Update one element
//! * Calculate the sum of the elements of a range
//! * Gets the elements of a number sequence.
use std::ops::{AddAssign, RangeBounds, Sub, SubAssign};
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
/// assert_eq!(ft.sum(2..), 11);
/// ```
#[derive(Debug, Clone)]
pub struct FenwickTree<T>(Vec<T>);
impl<T> From<Vec<T>> for FenwickTree<T>
where
T: Default + Clone + AddAssign<T>,
{
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
/// assert_eq!(ft.sum(2..6), 9);
/// ```
fn from(t: Vec<T>) -> Self {
let mut ft = FenwickTree::new(t.len());
for (i, x) in t.into_iter().enumerate() {
ft.add(i, x);
}
ft
}
}
impl<T> FenwickTree<T> {
/// Constructs a `FenwickTree<T>` with `n` elements.
///
/// Each element is initialized with `T::default()`.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let ft = FenwickTree::<i32>::new(5);
/// assert_eq!(ft.sum(..), 0);
/// ```
pub fn new(n: usize) -> Self
where
T: Default + Clone,
{
FenwickTree(vec![T::default(); n])
}
/// Add `x` to the `p`-th element.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
/// assert_eq!(ft.sum(2..6), 9);
///
/// ft.add(3, 100);
/// assert_eq!(ft.sum(2..6), 109);
/// ```
pub fn add(&mut self, p: usize, x: T)
where
T: Clone + AddAssign<T>,
{
let FenwickTree(data) = self;
let n = data.len();
assert!(p < n);
let mut p = p + 1;
while p <= n {
data[p - 1] += x.clone();
p += p & p.overflowing_neg().0;
}
}
/// Subtract `x` from the `p`-th element.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let mut ft = FenwickTree::<u32>::from(vec![3, 1, 4, 1, 5, 9, 2]);
/// assert_eq!(ft.sum(2..6), 19);
///
/// ft.sub(3, 1);
/// assert_eq!(ft.sum(2..6), 18);
/// ```
pub fn sub(&mut self, p: usize, x: T)
where
T: Clone + SubAssign<T>,
{
let FenwickTree(data) = self;
let n = data.len();
assert!(p < n);
let mut p = p + 1;
while p <= n {
data[p - 1] -= x.clone();
p += p & p.overflowing_neg().0;
}
}
/// Sets `x` to the `p`-th element.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
/// assert_eq!(ft.sum(2..6), 9);
///
/// ft.set(3, 100);
/// assert_eq!(ft.sum(2..6), 108);
/// ```
pub fn set(&mut self, p: usize, x: T)
where
T: Default + Clone + AddAssign<T> + Sub<T, Output = T> + SubAssign<T>,
{
let FenwickTree(data) = self;
let n = data.len();
assert!(p < n);
self.sub(p, self.get(p));
self.add(p, x);
}
/// Compute the sum of the range [0, r).
fn inner_sum(&self, r: usize) -> T
where
T: Default + Clone + AddAssign<T>,
{
let mut s = T::default();
let mut r = r;
while r > 0 {
s += self.0[r - 1].clone();
r -= r & r.wrapping_neg();
}
s
}
/// Calculate the total of the range.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
/// assert_eq!(ft.sum(..), 13);
/// assert_eq!(ft.sum(2..), 11);
/// assert_eq!(ft.sum(..6), 11);
/// assert_eq!(ft.sum(2..6), 9);
/// assert_eq!(ft.sum(6..2), 0);
/// ```
pub fn sum<R>(&self, rng: R) -> T
where
T: Default + Clone + AddAssign<T> + Sub<T, Output = T>,
R: RangeBounds<usize>,
{
let n = self.0.len();
let l = match rng.start_bound() {
std::ops::Bound::Included(&start_bound) => start_bound,
std::ops::Bound::Excluded(&start_bound) => start_bound + 1,
std::ops::Bound::Unbounded => 0,
};
let r = match rng.end_bound() {
std::ops::Bound::Included(&end_bound) => end_bound + 1,
std::ops::Bound::Excluded(&end_bound) => end_bound,
std::ops::Bound::Unbounded => n,
};
assert!(l <= n && r <= n);
if l >= r {
T::default()
} else {
self.inner_sum(r) - self.inner_sum(l)
}
}
/// Returns the value of an element in a sequence of numbers.
/// Calculate the total of the range.
///
/// # Examples
///
/// ```
/// use atcoder8_library::fenwick_tree::FenwickTree;
///
/// let ft = FenwickTree::from(vec![3, -1, 4, -1, 5]);
/// assert_eq!(ft.get(2), 4);
/// ```
pub fn get(&self, p: usize) -> T
where
T: Default + Clone + AddAssign<T> + Sub<T, Output = T>,
{
assert!(p < self.0.len());
self.sum(p..=p)
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0