結果
問題 | No.389 ロジックパズルの組み合わせ |
ユーザー |
![]() |
提出日時 | 2016-07-08 22:36:19 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 75 ms / 2,000 ms |
コード長 | 4,792 bytes |
コンパイル時間 | 891 ms |
コンパイル使用メモリ | 105,480 KB |
実行使用メモリ | 13,424 KB |
最終ジャッジ日時 | 2024-10-13 04:36:32 |
合計ジャッジ時間 | 7,201 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 99 |
ソースコード
#include <iostream>#include <iomanip>#include <sstream>#include <vector>#include <string>#include <set>#include <unordered_set>#include <map>#include <unordered_map>#include <stack>#include <queue>#include <deque>#include <algorithm>#include <functional>#include <iterator>#include <limits>#include <numeric>#include <utility>#include <cmath>#include <cassert>#include <cstdio>using namespace std;using namespace placeholders;using LL = long long;using ULL = unsigned long long;using VI = vector< int >;using VVI = vector< vector< int > >;using VS = vector< string >;using SS = stringstream;using PII = pair< int, int >;using VPII = vector< pair< int, int > >;template < typename T = int > using VT = vector< T >;template < typename T = int > using VVT = vector< vector< T > >;template < typename T = int > using LIM = numeric_limits< T >;template < typename T > inline istream& operator>>( istream &s, vector< T > &v ){ for ( T &t : v ) { s >> t; } return s; }template < typename T > inline ostream& operator<<( ostream &s, const vector< T > &v ){ for ( int i = 0; i < int( v.size() ); ++i ){ s << ( " " + !i) << v[i]; } return s; }template < typename T > inline T fromString( const string &s ) { T res; istringstream iss( s ); iss >> res; return res; }template < typename T > inline string toString( const T &a ) { ostringstream oss; oss << a; return oss.str(); }#define REP2( i, n ) REP3( i, 0, n )#define REP3( i, m, n ) for ( int i = ( int )( m ); i < ( int )( n ); ++i )#define GET_REP( a, b, c, F, ... ) F#define REP( ... ) GET_REP( __VA_ARGS__, REP3, REP2 )( __VA_ARGS__ )#define FOR( e, c ) for ( auto &&e : c )#define ALL( c ) begin( c ), end( c )#define AALL( a, t ) ( t* )a, ( t* )a + sizeof( a ) / sizeof( t )#define DRANGE( c, p ) ( c ).begin(), ( c ).begin() + ( p ), ( c ).end()#define SZ( v ) ( (int)( v ).size() )#define EXIST( c, e ) ( ( c ).find( e ) != ( c ).end() )template < typename T > inline bool chmin( T &a, const T &b ){ if ( b < a ) { a = b; return true; } return false; }template < typename T > inline bool chmax( T &a, const T &b ){ if ( a < b ) { a = b; return true; } return false; }#define PB push_back#define EM emplace#define EB emplace_back#define BI back_inserter#define MP make_pair#define fst first#define snd second#define DUMP( x ) cerr << #x << " = " << ( x ) << endlconstexpr int MOD = 1'000'000'007;// a^x を mod で求める// 反復二乗法// O( log x )long long mod_pow( long long a, long long x, long long mod ){a %= mod;long long res = 1;for ( ; x; x >>= 1, ( a *= a ) %= mod ){if ( x & 1 ){( res *= a ) %= mod;}}return res;}// p が素数のとき、p を法とする剰余体での逆元を求める// Fermat の小定理を利用// a^{ p - 1 } \equiv 1 ( mod p )// a^{ p - 2 } \equiv a^{-1} ( mod p )// incluide : mod_powint mod_inverse( long long a, long long p ){return mod_pow( a, p - 2, p );}// 素数を法とする剰余体での n! を求めるclass modFact{private:const int MAX_N, MOD;vector<int> fact;public:modFact( const int n, const int mod ) : MAX_N( n ), MOD( mod ), fact( min( MAX_N + 1, MOD ) ){fact[0] = 1;for ( int i = 1; i < (int)fact.size(); ++i ){fact[i] = 1LL * fact[ i - 1 ] * i % MOD;}return;}int operator()( const int n ){int e;return operator()( n, e );}int operator()( const int n, int &e ){e = 0;if ( n == 0 ){return 1;}const long long res = operator()( n / MOD, e );e += n / MOD;if ( n / MOD % 2 != 0 ){return res * ( MOD - fact[ n % MOD ] ) % MOD;}return res * fact[ n % MOD ] % MOD;}};// modfact( max_n, mod )// ()( n )// ()( n, e )// nCr// include : modFact, mod_inverseclass modComb{private:const int MOD;modFact mod_fact;public:modComb( const int n, const int mod ) : MOD( mod ), mod_fact( n, mod ) {};int operator()( const int n, const int r ){if ( n < 0 || r < 0 || n < r ){return 0;}int e1, e2, e3;long long a1 = mod_fact( n, e1 ), a2 = mod_fact( r, e2 ), a3 = mod_fact( n - r, e3 );if ( e1 > e2 + e3 ){return 0;}return a1 * mod_inverse( a2 * a3 % MOD, MOD ) % MOD;}};// modComb( n, mod )// ()( n, r )modComb nCr( 2000000, MOD );int main(){cin.tie( 0 );ios::sync_with_stdio( false );cout << setprecision( 12 ) << fixed;int N;scanf( "%d", &N );VI A;for ( int a; ~scanf( "%d", &a ); A.PB( a ) );if ( A[0] == 0 ){printf( "%d\n", 1 ) ;return 0;}const int blank = N - accumulate( ALL( A ), 0 );const int choice = SZ( A ) + 1;const int rest = blank - SZ( A ) + 1;if ( rest < 0 ){puts( "NA" );return 0;}printf( "%d\n", int( nCr( choice + rest - 1, rest ) ) );return 0;}