結果
問題 | No.2938 Sigma Sigma Distance Distance Problem |
ユーザー |
![]() |
提出日時 | 2024-10-18 22:38:20 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 202 ms / 2,000 ms |
コード長 | 2,338 bytes |
コンパイル時間 | 360 ms |
コンパイル使用メモリ | 82,640 KB |
実行使用メモリ | 97,356 KB |
最終ジャッジ日時 | 2024-10-18 22:53:15 |
合計ジャッジ時間 | 8,542 ms |
ジャッジサーバーID (参考情報) |
judge7 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 19 TLE * 1 |
ソースコード
import copy import heapq import itertools import math import operator import sys from bisect import bisect, bisect_left, bisect_right, insort from collections import Counter, deque from fractions import Fraction from functools import cmp_to_key, lru_cache, partial from inspect import currentframe from math import ceil, gcd, log10, pi, sqrt # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') input = sys.stdin.readline sys.setrecursionlimit(10000000) # mod = 10 ** 9 + 7 mod = 998244353 # mod = 1 << 128 # mod = 10 ** 30 + 1 INF = 1 << 61 DIFF = 10 ** -9 DX = [1, 0, -1, 0, 1, 1, -1, -1] DY = [0, 1, 0, -1, 1, -1, 1, -1] def read_values(): return tuple(map(int, input().split())) def read_index(): return tuple(map(lambda x: int(x) - 1, input().split())) def read_list(): return list(read_values()) def read_lists(N): return [read_list() for _ in range(N)] def dprint(*values): print(*values, file=sys.stderr) def dprint2(*values): names = {id(v): k for k, v in currentframe().f_back.f_locals.items()} dprint(", ".join(f"{names.get(id(value), '???')}={repr(value)}" for value in values)) def main(): N = int(input()) A = read_list() M = max(A) S = [[] for _ in range(M + 1)] for i, a in enumerate(A): S[a].append(i) DL = [] DR = [] for SA in S: L = [] s = 0 c = 0 for i in SA: L.append(c * i - s) s += i c += 1 R = [] s = 0 c = 0 for i in reversed(SA): R.append(c * (N - i) - s) s += N - i c += 1 DL.append(L) DR.append(list(reversed(R))) res = 0 for a in range(1, M + 1): SA = S[a] if len(SA) == 0: continue for b in range(1, M + 1): if a == b: continue SB = S[b] if len(SB) == 0: continue r = 0 for i in SB: k = bisect_left(SA, i) if k == 0: r += DR[a][0] + (SA[0] - i) * len(SA) else: k -= 1 r += DL[a][k] + DR[a][k] + (i - SA[k]) * (2 * (k + 1) - len(SA)) res += abs(a - b) * r print(res) if __name__ == "__main__": main()