結果
問題 |
No.2941 Sigma Music Game Score Problem
|
ユーザー |
![]() |
提出日時 | 2024-10-18 22:54:41 |
言語 | Haskell (9.10.1) |
結果 |
AC
|
実行時間 | 339 ms / 2,500 ms |
コード長 | 1,255 bytes |
コンパイル時間 | 2,937 ms |
コンパイル使用メモリ | 180,480 KB |
実行使用メモリ | 47,388 KB |
最終ジャッジ日時 | 2024-10-18 22:56:54 |
合計ジャッジ時間 | 8,136 ms |
ジャッジサーバーID (参考情報) |
judge7 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 29 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) Main.hs:48:79: warning: [GHC-63394] [-Wx-partial] In the use of ‘tail’ (imported from Data.List, but defined in GHC.List): "This is a partial function, it throws an error on empty lists. Replace it with drop 1, or use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty." | 48 | print $ ( `mod` modulo ) $ sum $ map ( sqsum . pred ) $ zipWith (-) ( tail xs ) xs | ^^^^ [2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE BinaryLiterals #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE NumDecimals #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE FlexibleContexts #-} {-# OPTIONS_GHC -O2 #-} {-# OPTIONS_GHC -Wno-tabs #-} import Control.Applicative import Control.Arrow import Control.Monad import Control.Monad.ST import Data.Char import Data.List import Data.Maybe import qualified Data.ByteString.Char8 as B import Data.Array import Data.Array.ST.Safe import Data.STRef import Debug.Trace import Text.Printf readInt = readLn :: IO Int readInteger = readLn :: IO Integer readInts = map ( fst . fromJust . B.readInt ) . B.words <$> B.getLine readIntegers = map ( fst . fromJust . B.readInteger ) . B.words <$> B.getLine which a b f = if f then a else b mp [ a, b ] = ( a, b ) modifyArray a i f = writeArray a i =<< f <$> readArray a i printList :: Show a => [a] -> IO () printList = putStrLn . intercalate " " . map show modulo = 998244353 main = do [ m, n ] <- readInts xs <- ( -1 : ) . ( ++ [ fromIntegral m ] ) . map pred <$> readIntegers print $ ( `mod` modulo ) $ sum $ map ( sqsum . pred ) $ zipWith (-) ( tail xs ) xs sqsum n = n * ( n + 1 ) * ( 2 * n + 1 ) `div` 6 `mod` modulo