結果

問題 No.2944 Sigma Partition Problem
ユーザー lif4635lif4635
提出日時 2024-10-18 23:06:36
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,447 bytes
コンパイル時間 375 ms
コンパイル使用メモリ 82,516 KB
実行使用メモリ 135,792 KB
最終ジャッジ日時 2024-10-18 23:07:02
合計ジャッジ時間 10,946 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def II() -> int : return int(input())
def MI() -> int : return map(int, input().split())
def TI() -> tuple[int] : return tuple(MI())
def LI() -> list[int] : return list(MI())
class fenwick_tree():
n=1
data=[0 for i in range(n)]
def __init__(self,N):
self.n=N
self.data=[0 for i in range(N)]
def add(self,p,x):
assert 0<=p<self.n,"0<=p<n,p={0},n={1}".format(p,self.n)
p+=1
while(p<=self.n):
self.data[p-1]+=x
p+=p& -p
def sum(self,l,r):
assert (0<=l and l<=r and r<=self.n),"0<=l<=r<=n,l={0},r={1},n={2}".format(l,r,self.n)
return self.sum0(r)-self.sum0(l)
def sum0(self,r):
s=0
while(r>0):
s+=self.data[r-1]
r-=r&-r
return s
"""使mod"""
MOD = 998244353
""""""
_IMAG = 911660635
_IIMAG = 86583718
""""""
_rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263,
    730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)
_irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543,
    109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)
_rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409,
    631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)
_irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487,
    262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)
def _fft(a):
n = len(a)
h = (n - 1).bit_length()
le = 0
for le in range(0, h - 1, 2):
p = 1 << (h - le - 2)
rot = 1
for s in range(1 << le):
rot2 = rot * rot % MOD
rot3 = rot2 * rot % MOD
offset = s << (h - le)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % MOD * _IMAG
a[i + offset] = (a0 + a2 + a1 + a3) % MOD
a[i + offset + p] = (a0 + a2 - a1 - a3) % MOD
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MOD
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MOD
rot = rot * _rate3[(~s & -~s).bit_length()] % MOD
if h - le & 1:
rot = 1
for s in range(1 << (h - 1)):
offset = s << 1
l = a[offset]
r = a[offset + 1] * rot
a[offset] = (l + r) % MOD
a[offset + 1] = (l - r) % MOD
rot = rot * _rate2[(~s & -~s).bit_length()] % MOD
def _ifft(a):
n = len(a)
h = (n - 1).bit_length()
le = h
for le in range(h, 1, -2):
p = 1 << (h - le)
irot = 1
for s in range(1 << (le - 2)):
irot2 = irot * irot % MOD
irot3 = irot2 * irot % MOD
offset = s << (h - le + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * _IIMAG % MOD
a[i + offset] = (a0 + a1 + a2 + a3) % MOD
a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MOD
a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MOD
a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MOD
irot = irot * _irate3[(~s & -~s).bit_length()] % MOD
if le & 1:
p = 1 << (h - 1)
for i in range(p):
l = a[i]
r = a[i + p]
a[i] = l + r if l + r < MOD else l + r - MOD
a[i + p] = l - r if l - r >= 0 else l - r + MOD
def ntt(a) -> None:
if len(a) <= 1:
return
_fft(a)
def intt(a) -> None:
if len(a) <= 1:
return
_ifft(a)
iv = pow(len(a), MOD - 2, MOD)
for i, x in enumerate(a):
a[i] = x * iv % MOD
def multiply(s: list, t: list) -> list:
n, m = len(s), len(t)
l = n + m - 1
if min(n, m) <= 60:
a = [0] * l
for i, x in enumerate(s):
for j, y in enumerate(t):
a[i + j] += x * y
return [x % MOD for x in a]
z = 1 << (l - 1).bit_length()
a = s + [0] * (z - n)
b = t + [0] * (z - m)
_fft(a)
_fft(b)
for i, x in enumerate(b):
a[i] = a[i] * x % MOD
_ifft(a)
a[l:] = []
iz = pow(z, MOD - 2, MOD)
return [x * iz % MOD for x in a]
mod = 998244353
q = II()
const = 4000
ans = [0]*q
qry = [[] for i in range(const+1)]
for i in range(q):
t,n,k = MI()
if k == 1:
ans[i] = 1
qry[k].append((i,n))
dp = [1]*(const+1)
for d in range(2,const+1):
a = [0]*(const+1)
for j in range(0,const+1,d):
a[j] = 1
dp = multiply(dp,a)[:const+1]
for i,n in qry[d]:
ans[i] = dp[n]
for i in ans:
print(i)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0