結果
問題 | No.2944 Sigma Partition Problem |
ユーザー | lif4635 |
提出日時 | 2024-10-18 23:06:36 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,447 bytes |
コンパイル時間 | 375 ms |
コンパイル使用メモリ | 82,516 KB |
実行使用メモリ | 135,792 KB |
最終ジャッジ日時 | 2024-10-18 23:07:02 |
合計ジャッジ時間 | 10,946 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
ソースコード
def II() -> int : return int(input())def MI() -> int : return map(int, input().split())def TI() -> tuple[int] : return tuple(MI())def LI() -> list[int] : return list(MI())class fenwick_tree():n=1data=[0 for i in range(n)]def __init__(self,N):self.n=Nself.data=[0 for i in range(N)]def add(self,p,x):assert 0<=p<self.n,"0<=p<n,p={0},n={1}".format(p,self.n)p+=1while(p<=self.n):self.data[p-1]+=xp+=p& -pdef sum(self,l,r):assert (0<=l and l<=r and r<=self.n),"0<=l<=r<=n,l={0},r={1},n={2}".format(l,r,self.n)return self.sum0(r)-self.sum0(l)def sum0(self,r):s=0while(r>0):s+=self.data[r-1]r-=r&-rreturn s"""使われるであろうmod"""MOD = 998244353"""擬似的な虚数単位"""_IMAG = 911660635_IIMAG = 86583718"""数論変換における回転因子の前計算"""_rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263,730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0)_irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543,109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0)_rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409,631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0)_irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487,262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0)def _fft(a):n = len(a)h = (n - 1).bit_length()le = 0for le in range(0, h - 1, 2):p = 1 << (h - le - 2)rot = 1for s in range(1 << le):rot2 = rot * rot % MODrot3 = rot2 * rot % MODoffset = s << (h - le)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p] * rota2 = a[i + offset + p * 2] * rot2a3 = a[i + offset + p * 3] * rot3a1na3imag = (a1 - a3) % MOD * _IMAGa[i + offset] = (a0 + a2 + a1 + a3) % MODa[i + offset + p] = (a0 + a2 - a1 - a3) % MODa[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MODa[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MODrot = rot * _rate3[(~s & -~s).bit_length()] % MODif h - le & 1:rot = 1for s in range(1 << (h - 1)):offset = s << 1l = a[offset]r = a[offset + 1] * rota[offset] = (l + r) % MODa[offset + 1] = (l - r) % MODrot = rot * _rate2[(~s & -~s).bit_length()] % MODdef _ifft(a):n = len(a)h = (n - 1).bit_length()le = hfor le in range(h, 1, -2):p = 1 << (h - le)irot = 1for s in range(1 << (le - 2)):irot2 = irot * irot % MODirot3 = irot2 * irot % MODoffset = s << (h - le + 2)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p]a2 = a[i + offset + p * 2]a3 = a[i + offset + p * 3]a2na3iimag = (a2 - a3) * _IIMAG % MODa[i + offset] = (a0 + a1 + a2 + a3) % MODa[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MODa[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MODa[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MODirot = irot * _irate3[(~s & -~s).bit_length()] % MODif le & 1:p = 1 << (h - 1)for i in range(p):l = a[i]r = a[i + p]a[i] = l + r if l + r < MOD else l + r - MODa[i + p] = l - r if l - r >= 0 else l - r + MODdef ntt(a) -> None:if len(a) <= 1:return_fft(a)def intt(a) -> None:if len(a) <= 1:return_ifft(a)iv = pow(len(a), MOD - 2, MOD)for i, x in enumerate(a):a[i] = x * iv % MODdef multiply(s: list, t: list) -> list:n, m = len(s), len(t)l = n + m - 1if min(n, m) <= 60:a = [0] * lfor i, x in enumerate(s):for j, y in enumerate(t):a[i + j] += x * yreturn [x % MOD for x in a]z = 1 << (l - 1).bit_length()a = s + [0] * (z - n)b = t + [0] * (z - m)_fft(a)_fft(b)for i, x in enumerate(b):a[i] = a[i] * x % MOD_ifft(a)a[l:] = []iz = pow(z, MOD - 2, MOD)return [x * iz % MOD for x in a]mod = 998244353q = II()const = 4000ans = [0]*qqry = [[] for i in range(const+1)]for i in range(q):t,n,k = MI()if k == 1:ans[i] = 1qry[k].append((i,n))dp = [1]*(const+1)for d in range(2,const+1):a = [0]*(const+1)for j in range(0,const+1,d):a[j] = 1dp = multiply(dp,a)[:const+1]for i,n in qry[d]:ans[i] = dp[n]for i in ans:print(i)