結果
問題 | No.2952 Invision of Multiples |
ユーザー | Rubikun |
提出日時 | 2024-10-25 21:59:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,636 ms / 4,000 ms |
コード長 | 33,448 bytes |
コンパイル時間 | 3,400 ms |
コンパイル使用メモリ | 233,072 KB |
実行使用メモリ | 218,696 KB |
最終ジャッジ日時 | 2024-10-25 22:01:11 |
合計ジャッジ時間 | 109,801 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
8,188 KB |
testcase_01 | AC | 6 ms
6,820 KB |
testcase_02 | AC | 2,263 ms
218,160 KB |
testcase_03 | AC | 59 ms
79,904 KB |
testcase_04 | AC | 59 ms
78,072 KB |
testcase_05 | AC | 56 ms
79,968 KB |
testcase_06 | AC | 56 ms
79,968 KB |
testcase_07 | AC | 57 ms
77,960 KB |
testcase_08 | AC | 58 ms
80,104 KB |
testcase_09 | AC | 2,167 ms
159,880 KB |
testcase_10 | AC | 2,154 ms
153,252 KB |
testcase_11 | AC | 2,454 ms
214,752 KB |
testcase_12 | AC | 2,431 ms
217,192 KB |
testcase_13 | AC | 1,899 ms
152,660 KB |
testcase_14 | AC | 3,065 ms
213,412 KB |
testcase_15 | AC | 3,633 ms
218,176 KB |
testcase_16 | AC | 3,632 ms
218,380 KB |
testcase_17 | AC | 3,009 ms
218,176 KB |
testcase_18 | AC | 2,974 ms
218,304 KB |
testcase_19 | AC | 3,001 ms
218,320 KB |
testcase_20 | AC | 2,964 ms
218,228 KB |
testcase_21 | AC | 2,711 ms
217,972 KB |
testcase_22 | AC | 2,711 ms
218,200 KB |
testcase_23 | AC | 2,729 ms
218,116 KB |
testcase_24 | AC | 2,705 ms
218,556 KB |
testcase_25 | AC | 2,737 ms
218,004 KB |
testcase_26 | AC | 2,773 ms
218,208 KB |
testcase_27 | AC | 3,622 ms
218,564 KB |
testcase_28 | AC | 3,635 ms
218,612 KB |
testcase_29 | AC | 3,588 ms
218,636 KB |
testcase_30 | AC | 3,636 ms
218,696 KB |
testcase_31 | AC | 3,615 ms
218,512 KB |
testcase_32 | AC | 3,580 ms
218,184 KB |
testcase_33 | AC | 2,566 ms
218,020 KB |
testcase_34 | AC | 2,567 ms
218,084 KB |
testcase_35 | AC | 2,509 ms
218,512 KB |
testcase_36 | AC | 3,487 ms
218,176 KB |
testcase_37 | AC | 3,478 ms
218,148 KB |
testcase_38 | AC | 3,567 ms
218,208 KB |
testcase_39 | AC | 2,544 ms
218,076 KB |
testcase_40 | AC | 2,623 ms
218,144 KB |
testcase_41 | AC | 2,535 ms
218,508 KB |
testcase_42 | AC | 2,590 ms
218,508 KB |
testcase_43 | AC | 2,540 ms
218,636 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; } #define vi vector<int> #define vl vector<ll> #define vii vector<pair<int,int>> #define vll vector<pair<ll,ll>> #define vvi vector<vector<int>> #define vvl vector<vector<ll>> #define vvii vector<vector<pair<int,int>>> #define vvll vector<vector<pair<ll,ll>>> #define vst vector<string> #define pii pair<int,int> #define pll pair<ll,ll> #define pb push_back #define all(x) (x).begin(),(x).end() #define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end()) #define fi first #define se second #define mp make_pair #define si(x) int(x.size()) const int mod=998244353,MAX=50005,INF=15<<26; //modint+畳み込み+逆元テーブル // from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9 // (based on AtCoder STL) #include <algorithm> #include <array> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include <utility> namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #include <cassert> #include <type_traits> #include <vector> namespace atcoder { namespace internal { template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder using mint=atcoder::modint998244353; mint inv[MAX],fac[MAX],finv[MAX]; void make(){ fac[0]=fac[1]=1; finv[0]=finv[1]=1; inv[1]=1; for(int i=2;i<MAX;i++){ inv[i]=-inv[mod%i]*(mod/i); fac[i]=fac[i-1]*i; finv[i]=finv[i-1]*inv[i]; } } mint comb(ll a,ll b){ if(a<b) return 0; return fac[a]*finv[b]*finv[a-b]; } mint perm(ll a,ll b){ if(a<b) return 0; return fac[a]*finv[a-b]; } // BIT セグ木 遅延セグ木 のみ // from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9 // (based on AtCoder STL) #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #include <cassert> #include <vector> namespace atcoder { template <class T> struct fenwick_tree { using U = internal::to_unsigned_t<T>; public: fenwick_tree() : _n(0) {} fenwick_tree(int n) : _n(n), data(n) {} void add(int p, T x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += U(x); p += p & -p; } } T sum(int l, int r) { assert(0 <= l && l <= r && r <= _n); return sum(r) - sum(l); } private: int _n; std::vector<U> data; U sum(int r) { U s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } }; } // namespace atcoder #include <algorithm> #include <cassert> #include <iostream> #include <vector> namespace atcoder { template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()> struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {} lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); lz = std::vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; std::vector<F> lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder #include <algorithm> #include <cassert> #include <vector> namespace atcoder { template <class S, S (*op)(S, S), S (*e)()> struct segtree { public: segtree() : segtree(0) {} segtree(int n) : segtree(std::vector<S>(n, e())) {} segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } template <bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template <class F> int max_right(int l, F f) { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template <class F> int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; } // namespace atcoder const int D=182; ll cn[D+2]; ll ru[D+2][MAX]; ll kei[D+2][MAX],kei2[D+2][MAX]; int main(){ std::ifstream in("text.txt"); std::cin.rdbuf(in.rdbuf()); cin.tie(0); ios::sync_with_stdio(false); make(); ll N,M;cin>>N>>M; vl A(N),B(N); mint al=1; for(int i=0;i<N;i++){ cin>>A[i]; B[i]=M/A[i]; al*=B[i]; } for(ll a=1;a<=D;a++){ for(ll b=1;b<=M;b++){ for(ll x=b;x<=M;x+=b){ kei[a][b]+=M/a-x/a; kei2[a][b]+=(x-1)/a; } } } for(ll x=1;x<=D;x++){ for(ll a=x;a<=M;a+=x){ ru[x][a]++; } for(ll a=M;a>=1;a--) ru[x][a]+=ru[x][a+1]; } atcoder::fenwick_tree<mint> BI(M+2); mint ans=0; for(int i=0;i<N;i++){ if(A[i]<=D){ for(ll a=1;a<=D;a++){ ans+=cn[a]*kei[a][A[i]]*inv[M/a]*inv[B[i]]; } cn[A[i]]++; }else{ for(ll a=1;a<=D;a++){ ans+=cn[a]*kei[a][A[i]]*inv[M/a]*inv[B[i]]; } for(ll y=A[i];y<=M;y+=A[i]){ ans+=BI.sum(y+1,M+2)*inv[B[i]]; } for(ll y=A[i];y<=M;y+=A[i]){ BI.add(y,inv[B[i]]); } } //cout<<(ans*al).val()<<endl; } //cout<<ans.val()<<endl; memset(cn,0,sizeof(cn)); for(int i=N-1;i>=0;i--){ if(A[i]<=D){ cn[A[i]]++; }else{ for(ll a=1;a<=D;a++){ ans+=cn[a]*kei2[a][A[i]]*inv[M/a]*inv[B[i]]; } } } ans*=al; cout<<ans.val()<<endl; }