結果

問題 No.2949 Product on Tree
ユーザー Shirotsume
提出日時 2024-10-26 00:30:41
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,030 ms / 2,000 ms
コード長 2,451 bytes
コンパイル時間 346 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 132,116 KB
最終ジャッジ日時 2024-10-26 00:31:25
合計ジャッジ時間 41,471 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys, time, random
from collections import deque, Counter, defaultdict
def debug(*x):print('debug:',*x, file=sys.stderr)
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 61 - 1
mod = 998244353
from collections import deque
def TreeDepth(s, graph):
    inf = 2 ** 61 - 1
    n = len(graph)
    depth = [inf] * n
    depth[s] = 0
    q = deque()
    q.append(s)
    while q:
        now = q.popleft()
        for to in graph[now]:
            if depth[to] == inf:
                depth[to] = depth[now] + 1
                q.append(to)
    return depth

def TreeOrder(s, graph):
    dist = TreeDepth(s, graph)
    n = len(graph)
    l = list(range(n))
    l.sort(key=lambda x: dist[x])
    return l
def subTree(s, graph):
    l = TreeOrder(s, graph)
    n = len(graph)
    sub = [0] * n
    for v in l[::-1]:
        sub[v] = 1
        for to in graph[v]:
            sub[v] += sub[to]
    return sub

def Treeheight(s, graph):
    l = TreeOrder(s, graph)
    n = len(graph)
    height = [0] * n
    for v in l[::-1]:
        height[v] = max([height[to] for to in graph[v]] + [0]) + 1
    return height

def EulerTour(s, graph):
    n = len(graph)
    done = [0] * n
    Q = [~s, s] # 根をスタックに追加
    ET = []
    while Q:
        i = Q.pop()
        if i >= 0: # 行きがけの処理
            done[i] = 1
            ET.append(i)
            for a in graph[i][::-1]:
                if done[a]: continue
                Q.append(~a) # 帰りがけの処理をスタックに追加
                Q.append(a) # 行きがけの処理をスタックに追加

        else: # 帰りがけの処理
            ET.append(~i)

    return ET

n = ii()
a = li()
graph = [[] for _ in range(n)]

for _ in range(n - 1):
    u, v = mi()
    u -= 1
    v -= 1
    graph[u].append(v)
    graph[v].append(u)
    
L = TreeOrder(0, graph)
d = TreeDepth(0, graph)
dp = [1] * n
ans = 0
i2 = pow(2, -1, mod)
for v in L[::-1]:
    s = 0
    nans = 0
    dp[v] = a[v]
    f = 0
    for to in graph[v]:
        if d[to] > d[v]:
            f = 1
            dp[v] += a[v] * dp[to]
            nans -= a[v] * dp[to] % mod * dp[to]
            dp[v] %= mod
            nans %= mod
            s += dp[to]
    nans += a[v] * s * s
    nans *= i2
    nans %= mod
    ans += dp[v] + nans - a[v]
    ans %= mod
    if not f:
        dp[v] = a[v]

print(ans)
0