結果
問題 | No.200 カードファイト! |
ユーザー | mkawa2 |
提出日時 | 2024-10-28 00:07:13 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 179 ms / 2,000 ms |
コード長 | 5,219 bytes |
コンパイル時間 | 319 ms |
コンパイル使用メモリ | 82,400 KB |
実行使用メモリ | 80,388 KB |
最終ジャッジ日時 | 2024-10-28 00:07:19 |
合計ジャッジ時間 | 5,195 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 158 ms
80,388 KB |
testcase_01 | AC | 164 ms
79,824 KB |
testcase_02 | AC | 65 ms
69,216 KB |
testcase_03 | AC | 68 ms
70,764 KB |
testcase_04 | AC | 66 ms
70,140 KB |
testcase_05 | AC | 160 ms
79,628 KB |
testcase_06 | AC | 171 ms
80,184 KB |
testcase_07 | AC | 150 ms
79,752 KB |
testcase_08 | AC | 143 ms
79,904 KB |
testcase_09 | AC | 174 ms
80,072 KB |
testcase_10 | AC | 138 ms
79,252 KB |
testcase_11 | AC | 116 ms
78,556 KB |
testcase_12 | AC | 127 ms
78,616 KB |
testcase_13 | AC | 68 ms
71,176 KB |
testcase_14 | AC | 66 ms
69,440 KB |
testcase_15 | AC | 66 ms
69,468 KB |
testcase_16 | AC | 64 ms
70,568 KB |
testcase_17 | AC | 65 ms
70,876 KB |
testcase_18 | AC | 66 ms
70,380 KB |
testcase_19 | AC | 106 ms
78,292 KB |
testcase_20 | AC | 166 ms
79,624 KB |
testcase_21 | AC | 89 ms
77,972 KB |
testcase_22 | AC | 97 ms
78,484 KB |
testcase_23 | AC | 85 ms
69,868 KB |
testcase_24 | AC | 104 ms
78,760 KB |
testcase_25 | AC | 128 ms
79,184 KB |
testcase_26 | AC | 65 ms
69,848 KB |
testcase_27 | AC | 122 ms
79,516 KB |
testcase_28 | AC | 179 ms
80,188 KB |
ソースコード
import sys sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) md = 10**9+7 # md = 998244353 # コストが負だと失敗するかも from typing import NamedTuple, Optional, List, Tuple, cast from heapq import heappush, heappop class MCFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int cost: int class _Edge: def __init__(self, dst: int, cap: int, cost: int) -> None: self.dst = dst self.cap = cap self.cost = cost self.rev: Optional[MCFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MCFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MCFGraph._Edge(dst, cap, cost) re = MCFGraph._Edge(src, 0, -cost) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MCFGraph._Edge, e.rev) return MCFGraph.Edge( re.dst, e.dst, e.cap+re.cap, re.cap, e.cost ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> Tuple[int, int]: return self.slope(s, t, flow_limit)[-1] def slope(self, s: int, t: int, flow_limit: Optional[int] = None) -> List[Tuple[int, int]]: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) dual = [0]*self._n prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None]*self._n def refine_dual() -> bool: pq = [(0, s)] visited = [False]*self._n dist: List[Optional[int]] = [None]*self._n dist[s] = 0 while pq: dist_v, v = heappop(pq) if visited[v]: continue visited[v] = True if v == t: break dual_v = dual[v] for e in self._g[v]: w = e.dst if visited[w] or e.cap == 0: continue reduced_cost = e.cost-dual[w]+dual_v new_dist = dist_v+reduced_cost dist_w = dist[w] if dist_w is None or new_dist < dist_w: dist[w] = new_dist prev[w] = v, e heappush(pq, (new_dist, w)) else: return False dist_t = dist[t] for v in range(self._n): if visited[v]: dual[v] -= cast(int, dist_t)-cast(int, dist[v]) return True flow = 0 cost = 0 prev_cost_per_flow: Optional[int] = None result = [(flow, cost)] while flow < flow_limit: if not refine_dual(): break f = flow_limit-flow v = t while prev[v] is not None: u, e = cast(Tuple[int, MCFGraph._Edge], prev[v]) f = min(f, e.cap) v = u v = t while prev[v] is not None: u, e = cast(Tuple[int, MCFGraph._Edge], prev[v]) e.cap -= f assert e.rev is not None e.rev.cap += f v = u c = -dual[s] flow += f cost += f*c if c == prev_cost_per_flow: result.pop() result.append((flow, cost)) prev_cost_per_flow = c return result n=II() a=II() bb=LI() c=II() dd=LI() bb.sort(reverse=True) dd.sort() mf=MCFGraph(2*n+2) s=2*n t=s+1 g=h=0 for u in range(n): mf.add_edge(s,u,1,0) mf.add_edge(u+n,t,1,0) if u%a==0: g = u//c h = (u+a-1)//c i=u%a for v in range(g*c,min(h*c+c,n)): j=v%c mf.add_edge(u,v+n,1,bb[i]<=dd[j]) f=mf.flow(s,t,n) print(n-f[1])