結果
問題 | No.2959 Dolls' Tea Party |
ユーザー |
👑 |
提出日時 | 2024-10-28 17:17:47 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,400 ms / 3,000 ms |
コード長 | 9,198 bytes |
コンパイル時間 | 331 ms |
コンパイル使用メモリ | 82,608 KB |
実行使用メモリ | 175,116 KB |
最終ジャッジ日時 | 2024-10-29 00:10:35 |
合計ジャッジ時間 | 67,384 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 33 |
ソースコード
import mathfrom collections import defaultdict# pow/log/exp of FPS# thanks for https://judge.yosupo.jp/submission/126665# FFT# code from: https://atcoder.jp/contests/practice2/submissions/24974537# but changed a little_fft_mod = 998244353_fft_imag = 911660635_fft_iimag = 86583718_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263,730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543,109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409,631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487,262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)def _butterfly(a):n = len(a)h = (n - 1).bit_length()len_ = 0while len_ < h:if h - len_ == 1:p = 1 << (h - len_ - 1)rot = 1for s in range(1 << len_):offset = s << (h - len_)for i in range(p):l = a[i + offset]r = a[i + offset + p] * rot % _fft_moda[i + offset] = (l + r) % _fft_moda[i + offset + p] = (l - r) % _fft_modif s + 1 != (1 << len_):rot *= _fft_rate2[(~s & -~s).bit_length() - 1]rot %= _fft_modlen_ += 1else:p = 1 << (h - len_ - 2)rot = 1for s in range(1 << len_):rot2 = rot * rot % _fft_modrot3 = rot2 * rot % _fft_modoffset = s << (h - len_)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p] * rota2 = a[i + offset + p * 2] * rot2a3 = a[i + offset + p * 3] * rot3a1na3imag = (a1 - a3) % _fft_mod * _fft_imaga[i + offset] = (a0 + a2 + a1 + a3) % _fft_moda[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_moda[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_moda[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_modif s + 1 != (1 << len_):rot *= _fft_rate3[(~s & -~s).bit_length() - 1]rot %= _fft_modlen_ += 2def _butterfly_inv(a):n = len(a)h = (n - 1).bit_length()len_ = hwhile len_:if len_ == 1:p = 1 << (h - len_)irot = 1for s in range(1 << (len_ - 1)):offset = s << (h - len_ + 1)for i in range(p):l = a[i + offset]r = a[i + offset + p]a[i + offset] = (l + r) % _fft_moda[i + offset + p] = (l - r) * irot % _fft_modif s + 1 != (1 << (len_ - 1)):irot *= _fft_irate2[(~s & -~s).bit_length() - 1]irot %= _fft_modlen_ -= 1else:p = 1 << (h - len_)irot = 1for s in range(1 << (len_ - 2)):irot2 = irot * irot % _fft_modirot3 = irot2 * irot % _fft_modoffset = s << (h - len_ + 2)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p]a2 = a[i + offset + p * 2]a3 = a[i + offset + p * 3]a2na3iimag = (a2 - a3) * _fft_iimag % _fft_moda[i + offset] = (a0 + a1 + a2 + a3) % _fft_moda[i + offset + p] = (a0 - a1 +a2na3iimag) * irot % _fft_moda[i + offset + p * 2] = (a0 + a1 -a2 - a3) * irot2 % _fft_moda[i + offset + p * 3] = (a0 - a1 -a2na3iimag) * irot3 % _fft_modif s + 1 != (1 << (len_ - 1)):irot *= _fft_irate3[(~s & -~s).bit_length() - 1]irot %= _fft_modlen_ -= 2def _convolution_naive(a, b):n = len(a)m = len(b)ans = [0] * (n + m - 1)if n < m:for j in range(m):for i in range(n):ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_modelse:for i in range(n):for j in range(m):ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_modreturn ansdef _convolution_fft(a, b):a = a.copy()b = b.copy()n = len(a)m = len(b)z = 1 << (n + m - 2).bit_length()a += [0] * (z - n)_butterfly(a)b += [0] * (z - m)_butterfly(b)for i in range(z):a[i] = a[i] * b[i] % _fft_mod_butterfly_inv(a)a = a[:n + m - 1]iz = pow(z, _fft_mod - 2, _fft_mod)for i in range(n + m - 1):a[i] = a[i] * iz % _fft_modreturn adef _convolution_square(a):a = a.copy()n = len(a)z = 1 << (2 * n - 2).bit_length()a += [0] * (z - n)_butterfly(a)for i in range(z):a[i] = a[i] * a[i] % _fft_mod_butterfly_inv(a)a = a[:2 * n - 1]iz = pow(z, _fft_mod - 2, _fft_mod)for i in range(2 * n - 1):a[i] = a[i] * iz % _fft_modreturn adef convolution(a, b):n = len(a)m = len(b)if n == 0 or m == 0:return []if min(n, m) <= 0:return _convolution_naive(a, b)if a is b:return _convolution_square(a)return _convolution_fft(a, b)# ----# 1/F# 必要 : a[0] != 0# 前提 : FFTdef poly_inv(a, length = None):if length == None: M = len(a)else: M = lengthif M <= 0: return []n = len(a)r = pow(a[0], _fft_mod-2, _fft_mod)m = 1res = [r]while m < M:f = a[:min(n,2*m)] + [0]*(2*m-min(n,2*m))g = res + [0]*m_butterfly(f)_butterfly(g)for i in range(2*m):f[i] = f[i] * g[i] % _fft_mod_butterfly_inv(f)f = f[m:] + [0]*m_butterfly(f)for i in range(2*m):f[i] = f[i] * g[i] % _fft_mod_butterfly_inv(f)iz = pow(2*m, _fft_mod-2, _fft_mod)iz = (-iz*iz) % _fft_modfor i in range(m):f[i] = f[i] * iz % _fft_modres += f[:m]m <<= 1return res[:M]# 多点評価# x に評価したい点を配列で入れよう!def multi_eval(x, a):n = len(x)siz = 1 << (n-1).bit_length()g = [[1] for i in range(2 * siz)]for i in range(n):g[i + siz] = [-x[i], 1]for i in range(siz-1, 0, -1):g[i] = convolution(g[2 * i], g[2 * i + 1])for i in range(1, 2 * siz):if i == 1: f = a[::]else: f = g[i >> 1]m = len(f) - len(g[i]) + 1v = convolution(f[::-1][:m], poly_inv(g[i][::-1], m))[m-1::-1]w = convolution(v, g[i])g[i] = f[::]h = g[i]for j in range(len(w)):h[j] -= w[j]h[j] %= _fft_modwhile len(h) > 1 and h[-1] == 0:h.pop()return [g[i+siz][0] for i in range(n)]# DEF MOD FACTmod = _fft_modN = 10**6 + 5fact = [1]*(N+1)factinv = [1]*(N+1)for i in range(2, N+1):fact[i] = fact[i-1] * i % modfactinv[-1] = pow(fact[-1], mod-2, mod)for i in range(N-1, 1, -1):factinv[i] = factinv[i+1] * (i+1) % moddef cmb(a, b):if (a < b) or (b < 0): return 0return fact[a] * factinv[b] % mod * factinv[a-b] % mod# log(F)# 必要 : a[0] = 1# 前提 : FFT, invdef poly_log(a, length = None):if length == None: M = len(a)else: M = lengthif M <= 0: return []n = len(a)if n == 1: return [0] * Mb = [a[i+1] * (i+1) % _fft_mod for i in range(n-1)]t = convolution(b, poly_inv(a, length = M))return [0] + [t[i] * factinv[i+1] % _fft_mod * fact[i] % _fft_mod for i in range(M-1)]# exp(F)# 必要 : a[0] = 0# 前提 : FFT, inv, logdef poly_exp(a, length = None):if length == None: M = len(a)else: M = lengthif M <= 0: return []n = len(a)m = 1res = [1]while m < M:f = a[:min(n,2*m)] + [0]*(2*m-min(n,2*m))#print(res)v = poly_log(res, length = 2*m)w = [(f[i]-v[i])%_fft_mod for i in range(2*m)]w[0] = (w[0]+1)%_fft_modg = convolution(res, w)res += g[m:2*m]m <<= 1return res[:M]def poly_pow_nonzero(a, m, l):n = len(a)bais = pow(a[0], m, _fft_mod)invs = pow(a[0], _fft_mod-2, _fft_mod)r = [a[i] * invs % _fft_mod for i in range(n)]r = poly_log(r, length = l)for i in range(l):r[i] = r[i] * m % _fft_modr = poly_exp(r, length = l)for i in range(l):r[i] = r[i] * bais % _fft_modreturn rdef poly_pow(a, m, l):n = len(a)ind = 0for i in range(n):if a[i] != 0:ind = ibreakif ind * m >= l:return [0] * lreturn [0] * (ind * m) + poly_pow_nonzero(a[ind:], m, l-ind*m)# DEF MOD FACT はされています!!6MOD = 998244353def main():N, K = map(int,input().split())A = list(map(int,input().split()))Frequency_P = defaultdict(int)for i in range(K):Frequency_P[math.gcd(i + 1, K)] += 1Frequency_A = [0] * (K + 1)for i in range(N):Frequency_A[min(A[i], K)] += 1facts = [1] * (K + 1)ifacts = [1] * (K + 1)for i in range(K):facts[i + 1] = facts[i] * (i + 1) % MODifacts[i + 1] = pow(facts[i + 1], MOD - 2, MOD)F = [[0 for i in range(K + 1)] for j in range(K + 1)]F_log = [[0 for i in range(K + 1)] for j in range(K + 1)]for i in range(K + 1):for j in range(i + 1):F[i][j] = ifacts[j]F_log[i] = poly_log(F[i])ans = 0for P, C in Frequency_P.items():Q = K // PFrequency_B = [0] * (P + 1)for i in range(K + 1):Frequency_B[i // Q] += Frequency_A[i]G_log = [0] * (P + 1)for i in range(P + 1):for j in range(P + 1):G_log[j] += F_log[i][j] * Frequency_B[i]for j in range(P + 1):G_log[j] %= MODG = poly_exp(G_log)ans += G[P] * facts[P] * Cans *= pow(K, MOD - 2, MOD)ans %= MODprint(ans)main()