結果

問題 No.2959 Dolls' Tea Party
ユーザー 👑 binap
提出日時 2024-10-28 17:17:47
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,400 ms / 3,000 ms
コード長 9,198 bytes
コンパイル時間 331 ms
コンパイル使用メモリ 82,608 KB
実行使用メモリ 175,116 KB
最終ジャッジ日時 2024-10-29 00:10:35
合計ジャッジ時間 67,384 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import math
from collections import defaultdict
# pow/log/exp of FPS
# thanks for https://judge.yosupo.jp/submission/126665
# FFT
# code from: https://atcoder.jp/contests/practice2/submissions/24974537
# but changed a little
_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263,
    730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543,
    109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409,
    631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487,
    262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
def _butterfly(a):
n = len(a)
h = (n - 1).bit_length()
len_ = 0
while len_ < h:
if h - len_ == 1:
p = 1 << (h - len_ - 1)
rot = 1
for s in range(1 << len_):
offset = s << (h - len_)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p] * rot % _fft_mod
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 1
else:
p = 1 << (h - len_ - 2)
rot = 1
for s in range(1 << len_):
rot2 = rot * rot % _fft_mod
rot3 = rot2 * rot % _fft_mod
offset = s << (h - len_)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 2
def _butterfly_inv(a):
n = len(a)
h = (n - 1).bit_length()
len_ = h
while len_:
if len_ == 1:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 1)):
offset = s << (h - len_ + 1)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p]
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) * irot % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 1
else:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 2)):
irot2 = irot * irot % _fft_mod
irot3 = irot2 * irot % _fft_mod
offset = s << (h - len_ + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
a[i + offset + p] = (a0 - a1 +
a2na3iimag) * irot % _fft_mod
a[i + offset + p * 2] = (a0 + a1 -
a2 - a3) * irot2 % _fft_mod
a[i + offset + p * 3] = (a0 - a1 -
a2na3iimag) * irot3 % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 2
def _convolution_naive(a, b):
n = len(a)
m = len(b)
ans = [0] * (n + m - 1)
if n < m:
for j in range(m):
for i in range(n):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
else:
for i in range(n):
for j in range(m):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
return ans
def _convolution_fft(a, b):
a = a.copy()
b = b.copy()
n = len(a)
m = len(b)
z = 1 << (n + m - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
b += [0] * (z - m)
_butterfly(b)
for i in range(z):
a[i] = a[i] * b[i] % _fft_mod
_butterfly_inv(a)
a = a[:n + m - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(n + m - 1):
a[i] = a[i] * iz % _fft_mod
return a
def _convolution_square(a):
a = a.copy()
n = len(a)
z = 1 << (2 * n - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
for i in range(z):
a[i] = a[i] * a[i] % _fft_mod
_butterfly_inv(a)
a = a[:2 * n - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(2 * n - 1):
a[i] = a[i] * iz % _fft_mod
return a
def convolution(a, b):
n = len(a)
m = len(b)
if n == 0 or m == 0:
return []
if min(n, m) <= 0:
return _convolution_naive(a, b)
if a is b:
return _convolution_square(a)
return _convolution_fft(a, b)
# ----
# 1/F
# : a[0] != 0
# : FFT
def poly_inv(a, length = None):
if length == None: M = len(a)
else: M = length
if M <= 0: return []
n = len(a)
r = pow(a[0], _fft_mod-2, _fft_mod)
m = 1
res = [r]
while m < M:
f = a[:min(n,2*m)] + [0]*(2*m-min(n,2*m))
g = res + [0]*m
_butterfly(f)
_butterfly(g)
for i in range(2*m):
f[i] = f[i] * g[i] % _fft_mod
_butterfly_inv(f)
f = f[m:] + [0]*m
_butterfly(f)
for i in range(2*m):
f[i] = f[i] * g[i] % _fft_mod
_butterfly_inv(f)
iz = pow(2*m, _fft_mod-2, _fft_mod)
iz = (-iz*iz) % _fft_mod
for i in range(m):
f[i] = f[i] * iz % _fft_mod
res += f[:m]
m <<= 1
return res[:M]
#
# x
def multi_eval(x, a):
n = len(x)
siz = 1 << (n-1).bit_length()
g = [[1] for i in range(2 * siz)]
for i in range(n):
g[i + siz] = [-x[i], 1]
for i in range(siz-1, 0, -1):
g[i] = convolution(g[2 * i], g[2 * i + 1])
for i in range(1, 2 * siz):
if i == 1: f = a[::]
else: f = g[i >> 1]
m = len(f) - len(g[i]) + 1
v = convolution(f[::-1][:m], poly_inv(g[i][::-1], m))[m-1::-1]
w = convolution(v, g[i])
g[i] = f[::]
h = g[i]
for j in range(len(w)):
h[j] -= w[j]
h[j] %= _fft_mod
while len(h) > 1 and h[-1] == 0:
h.pop()
return [g[i+siz][0] for i in range(n)]
# DEF MOD FACT
mod = _fft_mod
N = 10**6 + 5
fact = [1]*(N+1)
factinv = [1]*(N+1)
for i in range(2, N+1):
fact[i] = fact[i-1] * i % mod
factinv[-1] = pow(fact[-1], mod-2, mod)
for i in range(N-1, 1, -1):
factinv[i] = factinv[i+1] * (i+1) % mod
def cmb(a, b):
if (a < b) or (b < 0): return 0
return fact[a] * factinv[b] % mod * factinv[a-b] % mod
# log(F)
# : a[0] = 1
# : FFT, inv
def poly_log(a, length = None):
if length == None: M = len(a)
else: M = length
if M <= 0: return []
n = len(a)
if n == 1: return [0] * M
b = [a[i+1] * (i+1) % _fft_mod for i in range(n-1)]
t = convolution(b, poly_inv(a, length = M))
return [0] + [t[i] * factinv[i+1] % _fft_mod * fact[i] % _fft_mod for i in range(M-1)]
# exp(F)
# : a[0] = 0
# : FFT, inv, log
def poly_exp(a, length = None):
if length == None: M = len(a)
else: M = length
if M <= 0: return []
n = len(a)
m = 1
res = [1]
while m < M:
f = a[:min(n,2*m)] + [0]*(2*m-min(n,2*m))
#print(res)
v = poly_log(res, length = 2*m)
w = [(f[i]-v[i])%_fft_mod for i in range(2*m)]
w[0] = (w[0]+1)%_fft_mod
g = convolution(res, w)
res += g[m:2*m]
m <<= 1
return res[:M]
def poly_pow_nonzero(a, m, l):
n = len(a)
bais = pow(a[0], m, _fft_mod)
invs = pow(a[0], _fft_mod-2, _fft_mod)
r = [a[i] * invs % _fft_mod for i in range(n)]
r = poly_log(r, length = l)
for i in range(l):
r[i] = r[i] * m % _fft_mod
r = poly_exp(r, length = l)
for i in range(l):
r[i] = r[i] * bais % _fft_mod
return r
def poly_pow(a, m, l):
n = len(a)
ind = 0
for i in range(n):
if a[i] != 0:
ind = i
break
if ind * m >= l:
return [0] * l
return [0] * (ind * m) + poly_pow_nonzero(a[ind:], m, l-ind*m)
# DEF MOD FACT 6
MOD = 998244353
def main():
N, K = map(int,input().split())
A = list(map(int,input().split()))
Frequency_P = defaultdict(int)
for i in range(K):
Frequency_P[math.gcd(i + 1, K)] += 1
Frequency_A = [0] * (K + 1)
for i in range(N):
Frequency_A[min(A[i], K)] += 1
facts = [1] * (K + 1)
ifacts = [1] * (K + 1)
for i in range(K):
facts[i + 1] = facts[i] * (i + 1) % MOD
ifacts[i + 1] = pow(facts[i + 1], MOD - 2, MOD)
F = [[0 for i in range(K + 1)] for j in range(K + 1)]
F_log = [[0 for i in range(K + 1)] for j in range(K + 1)]
for i in range(K + 1):
for j in range(i + 1):
F[i][j] = ifacts[j]
F_log[i] = poly_log(F[i])
ans = 0
for P, C in Frequency_P.items():
Q = K // P
Frequency_B = [0] * (P + 1)
for i in range(K + 1):
Frequency_B[i // Q] += Frequency_A[i]
G_log = [0] * (P + 1)
for i in range(P + 1):
for j in range(P + 1):
G_log[j] += F_log[i][j] * Frequency_B[i]
for j in range(P + 1):
G_log[j] %= MOD
G = poly_exp(G_log)
ans += G[P] * facts[P] * C
ans *= pow(K, MOD - 2, MOD)
ans %= MOD
print(ans)
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0