結果
| 問題 |
No.2959 Dolls' Tea Party
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-10-29 01:28:17 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 480 ms / 3,000 ms |
| コード長 | 24,760 bytes |
| コンパイル時間 | 29,277 ms |
| コンパイル使用メモリ | 361,260 KB |
| 最終ジャッジ日時 | 2025-02-25 01:13:49 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 33 |
ソースコード
// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000009>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
* N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
* n! を返す.
*
* mint fact_inv(int n) : O(1)
* 1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
* 1/n を返す.
*
* mint perm(int n, int r) : O(1)
* 順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
* 二項係数 nCr を返す.
*
* mint bin_inv(int n, int r) : O(1)
* 二項係数の逆数 1/nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
* 多項係数 nC[rs] を返す.(n = Σrs)
*
* mint hom(int n, int r) : O(1)
* 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
*
* mint neg_bin(int n, int r) : O(1)
* 負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)
*/
class Factorial_mint {
int n_max;
// 階乗と階乗の逆数の値を保持するテーブル
vm fac, fac_inv;
public:
// n! までの階乗とその逆数を前計算しておく.O(n)
Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
fac[0] = 1;
repi(i, 1, n) fac[i] = fac[i - 1] * i;
fac_inv[n] = fac[n].inv();
repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
}
Factorial_mint() : n_max(0) {} // ダミー
// n! を返す.
mint fact(int n) const {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
Assert(0 <= n && n <= n_max);
return fac[n];
}
// 1/n! を返す(n が負なら 0 を返す)
mint fact_inv(int n) const {
// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h
Assert(n <= n_max);
if (n < 0) return 0;
return fac_inv[n];
}
// 1/n を返す.
mint inv(int n) const {
// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d
Assert(0 < n && n <= n_max);
return fac[n - 1] * fac_inv[n];
}
// 順列の数 nPr を返す.
mint perm(int n, int r) const {
// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[n - r];
}
// 二項係数 nCr を返す.
mint bin(int n, int r) const {
// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[r] * fac_inv[n - r];
}
// 二項係数の逆数 1/nCr を返す.
mint bin_inv(int n, int r) const {
// verify : https://www.codechef.com/problems/RANDCOLORING
Assert(n <= n_max);
Assert(r >= 0 && n - r >= 0);
return fac_inv[n] * fac[r] * fac[n - r];
}
// 多項係数 nC[rs] を返す.
mint mul(const vi& rs) const {
// verify : https://yukicoder.me/problems/no/2141
if (*min_element(all(rs)) < 0) return 0;
int n = accumulate(all(rs), 0);
Assert(n <= n_max);
mint res = fac[n];
repe(r, rs) res *= fac_inv[r];
return res;
}
// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
mint hom(int n, int r) {
// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2
if (n == 0) return (int)(r == 0);
Assert(n + r - 1 <= n_max);
if (r < 0 || n - 1 < 0) return 0;
return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];
}
// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)
mint neg_bin(int n, int r) {
// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g
if (n == 0) return (int)(r == 0);
Assert(-n + r - 1 <= n_max);
if (r < 0 || -n - 1 < 0) return 0;
return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];
}
};
//【形式的冪級数】
/*
* MFPS() : O(1)
* 零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
* 定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
* n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* 畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|)
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|)
* 形式的冪級数としての和,差,積,商の結果を返す.
* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
* 制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d を返す.
* 制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* 多項式としての f を g で割った商,余り,商と余りの組を返す.
* 制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
* 多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
* 単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
* 多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
* mod z^d をとる.
*
* f.resize() : O(n)
* 不要な高次の項を削る.
*
* f >> d, f << d : O(n)
* 係数列を d だけ右[左]シフトした多項式を返す.
* (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
* 最高次の係数として c を追加する.
*/
struct MFPS {
using SMFPS = vector<pim>;
int n; // 係数の個数(次数 + 1)
vm c; // 係数列
inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数
// コンストラクタ(0,定数,係数列で初期化)
MFPS() : n(0) {}
MFPS(mint c0) : n(1), c({ c0 }) {}
MFPS(int c0) : n(1), c({ mint(c0) }) {}
MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
// 代入
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
void push_back(mint cn) { c.emplace_back(cn); ++n; }
void pop_back() { c.pop_back(); --n; }
[[nodiscard]] mint back() { return c.back(); }
// 比較
[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }
// アクセス
inline mint const& operator[](int i) const { return c[i]; }
inline mint& operator[](int i) { return c[i]; }
// 次数
[[nodiscard]] int deg() const { return n - 1; }
[[nodiscard]] int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
// 加算
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
// 定数加算
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
// 減算
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
// 定数減算
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
// 加法逆元
[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }
// 定数倍
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
// 右からの定数除算
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
// 積
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
// 除算
[[nodiscard]] MFPS inv(int d) const {
// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//【方法】
// 1 / f mod z^d を求めることは,
// f g = 1 (mod z^d)
// なる g を求めることである.
// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
//
// d = 1 のときについては
// g = 1 / f[0] (mod z^1)
// である.
//
// 次に,
// g = h (mod z^k)
// が求まっているとして
// g mod z^(2 k)
// を求める.最初の式を変形していくことで
// g - h = 0 (mod z^k)
// ⇒ (g - h)^2 = 0 (mod z^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より)
// ⇔ g = (2 - f h) h (mod z^(2 k))
// を得る.
//
// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.
Assert(!c.empty());
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k <<= 1) {
int len = max(min(2 * k, d), 1);
MFPS tmp(0, len);
rep(i, min(len, n)) tmp[i] = -c[i]; // -f
tmp *= g; // -f h
tmp.resize(len);
tmp[0] += 2; // 2 - f h
g *= tmp; // (2 - f h) h
g.resize(len);
}
return g;
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
// 余り付き除算
[[nodiscard]] MFPS quotient(const MFPS& g) const {
// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//【方法】
// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
// 従って q の次数は n-m,r の次数は m-2 となる.
//
// f^R で f の係数列を逆順にした多項式を表す.すなわち
// f^R(x) := f(1/x) x^(n-1)
// である.他の多項式も同様とする.
//
// 最初の式で x → 1/x と置き換えると,
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
// を得る.
//
// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
// q の次数は n-m であったから,q 自身を正しく求めることができた.
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
[[nodiscard]] MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize();
}
[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize();
return res;
}
// スパース積
MFPS& operator*=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// 後ろからインライン配る DP
repir(i, n - 1, 0) {
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
// 定数項は最後に配るか消去しないといけない.
c[i] *= g0;
}
return *this;
}
[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
// スパース商
MFPS& operator/=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// 前からインライン配る DP(後ろに累積効果あり)
rep(i, n) {
// 定数項は最初に配らないといけない.
c[i] *= g0_inv;
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
// 係数反転
[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
// 単項式
[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
MFPS mono(0, d + 1);
mono[d] = coef;
return mono;
}
// 不要な高次項の除去
MFPS& resize() {
// 最高次の係数が非 0 になるまで削る.
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d 以上の項を除去する.
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
// 不定元への代入
[[nodiscard]] mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
// 係数のシフト
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i] << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//【対数関数】O(n log n)
/*
* log f(z) mod z^d を返す.
*
* 制約 : [z^0]f(z) = 1,fm は d! まで計算可能
*/
MFPS log_fps(const MFPS& f, int d, const Factorial_mint& fm) {
// 参考 : https://qiita.com/hotman78/items/f0e6d2265badd84d429a
// verify : https://judge.yosupo.jp/problem/log_of_formal_power_series
//【方法】
// g(z) = log f(z) とおく.両辺を z で微分して
// g'(z) = f'(z) / f(z)
// を得るので,
// g(z) = ∫ f'(z) / f(z) dz
// として計算すればよい.
int n = sz(f);
MFPS g(0, max(n - 1, 1));
repi(i, 1, n - 1) g[i - 1] = f[i] * i; // f'(z)
g *= f.inv(d - 1); // f'(z) / f(z)
g.resize(d);
repir(i, d - 1, 1) g[i] = g[i - 1] * fm.inv(i); // ∫ f'(z) / f(z) dz
g[0] = 0;
return g;
}
//【指数関数】O(n log n)
/*
* exp f(z) mod z^d を返す.
*
* 制約 : [z^0]f(z) = 0,fm は d! まで計算可能
*
* 利用:【対数関数】
*/
MFPS exp_fps(const MFPS& f, int d, const Factorial_mint& fm) {
// 参考 : https://qiita.com/hotman78/items/f0e6d2265badd84d429a
// verify : https://judge.yosupo.jp/problem/exp_of_formal_power_series
//【方法】
// g(z) = exp f(z) とおき,方程式
// log g(z) = f(z)
// に対してニュートン法を用いる.
//
// f(0) = 0 なので,mod z^1 では
// log(1) ≡ f(z) mod z^1
// が成り立つ.
//
// mod z^k で
// log h(z) ≡ f(z) mod z^k
// が成り立っていると仮定すると,ニュートン法より
// g = h - (log h - f) / (log h)'
// ⇔ g = h (f + 1 - log h)
// と置くと
// log g(z) ≡ f(z) mod z^(2 k)
// が成り立つ.
//
// これを繰り返せば所望の g が求まる.
// ニュートン法で log g = f なる g を見つける.
MFPS g(1);
for (int k = 1; k < d; k <<= 1) {
int len = max(min(2 * k, d), 1);
auto tmp = log_fps(g, len, fm); // log h
rep(i, len) tmp[i] = (i < sz(f) ? f[i] : 0) - tmp[i]; // f - log h
tmp[0] += 1; // f + 1 - log h
g *= tmp; // h (f + 1 - log h)
g.resize(len);
}
return g;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, K;
cin >> n >> K;
vi a(n);
cin >> a;
Factorial_mint fm(K + 10);
// a を度数分布になおしておく(K 以上は K 個と同一視できる)
vi a_dist(K + 1);
rep(i, n) a_dist[min(a[i], K)]++;
// exp-log テクのための前計算.log の前計算が遅いので何とかしたい・・・
vector<MFPS> fs(K + 1); MFPS e{ 1 };
repi(k, 1, K) {
// log をとられる関数が exp(z) に近いのを活かしてちょっとだけ高速化
e.push_back(fm.fact_inv(k));
fs[k] = 1 - (e.inv(K - k + 1) >> k) * fm.fact_inv(k);
repir(i, K, k) fs[k][i] = fs[k][i - 1] * fm.inv(i);
}
dumpel(fs);
vi memo(K + 1, -1); // unordered_map が遅かったとかそんなことある?
mint res = 0;
repi(i, 1, K) {
int ord = K / gcd(i, K);
if (memo[ord] != -1) {
res += memo[ord];
continue;
}
dump("-------------", ord, "---------------");
int D = K / ord;
// b = a / ord の度数分布を求める.
vi b_dist(D + 1);
int len = 1;
repi(k, 0, K) {
int L = k / ord;
b_dist[L] += a_dist[k];
len += L * a_dist[k];
}
dump(b_dist);
// [z^D] f(z) = 0 と分かりきっているなら無視
if (len <= D) {
memo[ord] = 0;
continue;
}
// [z^D] まで計算できれば十分
MFPS g(0, D + 1);
repi(d, 1, D) {
if (b_dist[d] == 0) continue;
// ここはスカラー倍と加算だけで済むので軽い
g[1] += b_dist[d];
repi(i, d + 1, D) g[i] += b_dist[d] * fs[d][i];
}
// exp も各位数ごとに 1 回しか使わなくて良い
g = exp_fps(g, D + 1, fm);
dump(g);
auto add = g[D] * fm.fact(D);
dump(add);
memo[ord] = add.val();
res += add;
}
res *= fm.inv(K);
EXIT(res);
}