結果
| 問題 |
No.981 一般冪乗根
|
| ユーザー |
|
| 提出日時 | 2024-11-01 10:35:46 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 21 ms / 6,000 ms |
| コード長 | 8,634 bytes |
| コンパイル時間 | 6,860 ms |
| コンパイル使用メモリ | 338,760 KB |
| 実行使用メモリ | 11,332 KB |
| 最終ジャッジ日時 | 2024-11-01 11:01:43 |
| 合計ジャッジ時間 | 75,845 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 41 TLE * 3 |
ソースコード
#include<bits/stdc++.h>
#include<atcoder/all>
namespace my{
using namespace std;
#define eb emplace_back
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define FO(n) for(ll ij=n;ij--;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i-=i##step)
#define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a)
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
using ull=unsigned long long;
using ulll=__uint128_t;
using lll=__int128_t;
istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);}
istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const lll&x){return o<<string(x<0,'-')<<ulll(x>0?x:-x);}
auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;return r;}
constexpr char nl=10;
constexpr char sp=32;
lll pw(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;}
template<class A,class B>struct pair{
A a;B b;
pair()=default;
pair(A a,B b):a(a),b(b){}
pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
auto operator<=>(const pair&)const=default;
friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<sp<<p.b;}
};
template<class F=less<>>auto&sort(auto&a,const F&f={}){ranges::sort(a,f);return a;}
template<class T,class U>ostream&operator<<(ostream&o,const std::pair<T,U>&p){return o<<p.first<<sp<<p.second;}
template<class T,size_t n>ostream&operator<<(ostream&o,const array<T,n>&a){fo(i,n)o<<a[i]<<string(i!=n-1,sp);return o;}
template<class T,class U>ostream&operator<<(ostream&o,const unordered_map<T,U>&m){fe(m,e)o<<e.first<<sp<<e.second<<nl;return o;}
template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?nl:sp);return o;}
template<class V>struct vec:vector<V>{
using vector<V>::vector;
vec(const vector<V>&v){vector<V>::operator=(v);}
vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
vec operator^(const vec&u)const{return vec{*this}^=u;}
vec&operator++(){fe(*this,e)++e;return*this;}
vec&operator--(){fe(*this,e)--e;return*this;}
};
void lin(auto&...a){(cin>>...>>a);}
template<char c=sp>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<nl;}
template<class T,class U=T>auto rle(const vec<T>&a){vec<pair<T,U>>r;fe(a,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;}
template<class T,class U=T>auto rce(vec<T>a){return rle<T,U>(sort(a));}
uint64_t kth_root_floor(uint64_t a,ll k){
if (k==1)return a;
auto is_within=[&](uint32_t x){uint64_t t=1;fo(k)if(__builtin_mul_overflow(t,x,&t))return false;return t<=a;};
uint64_t r=0;
of(i,sizeof(uint32_t)*CHAR_BIT)if(is_within(r|(1u<<i)))r|=1u<<i;
return r;
}
auto sqrt_floor(auto x){return kth_root_floor(x,2);}
ll rand(auto...a){array<ll,2>v{0,0};ll I=0;((v[I++]=a),...);auto[l,r]=v;if(I==1)swap(l,r);static ll t=495;t^=t<<7,t^=t>>9;return l<r?(t%(r-l)+(t%(r-l)<0?r-l:0))+l:t;}
struct montgomery64{
using i64=__int64_t;
using u64=__uint64_t;
using u128=__uint128_t;
static inline u64 N=998244353;
static inline u64 N_inv;
static inline u64 R2;
static void set_mod(u64 N){
assert(N<(1ULL<<63));
assert(N&1);
montgomery64::N=N;
R2=-u128(N)%N;
N_inv=N;
fo(5)N_inv*=2-N*N_inv;
assert(N*N_inv==1);
}
static u64 mod(){
return N;
}
u64 a;
montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)N+N)*R2)){}
static u64 reduce(const u128&T){
u128 r=(T+u128(u64(T)*-N_inv)*N)>>64;
return r>=N?r-N:r;
}
auto&operator+=(const montgomery64&b){if((a+=b.a)>=N)a-=N;return*this;}
auto&operator-=(const montgomery64&b){if(i64(a-=b.a)<0)a+=N;return*this;}
auto&operator*=(const montgomery64&b){a=reduce(u128(a)*b.a);return*this;}
auto&operator/=(const montgomery64&b){*this*=b.inv();return*this;}
auto operator+(const montgomery64&b)const{return montgomery64(*this)+=b;}
auto operator-(const montgomery64&b)const{return montgomery64(*this)-=b;}
auto operator*(const montgomery64&b)const{return montgomery64(*this)*=b;}
auto operator/(const montgomery64&b)const{return montgomery64(*this)/=b;}
bool operator==(const montgomery64&b)const{return a==b.a;}
auto operator-()const{return montgomery64()-montgomery64(*this);}
montgomery64 pow(u128 n)const{
montgomery64 r{1},x{*this};
while(n){
if(n&1)r*=x;
x*=x;
n>>=1;
}
return r;
}
montgomery64 inv()const{
u64 a=this->a,b=N,u=1,v=0;
while(b)u-=a/b*v,swap(u,v),a-=a/b*b,swap(a,b);
return u;
}
u64 val()const{
return reduce(a);
}
friend istream&operator>>(istream&i,montgomery64&b){
ll t;i>>t;b=t;
return i;
}
friend ostream&operator<<(ostream&o,const montgomery64&b){
return o<<b.val();
}
};
template<class modular>bool miller_rabin(ll n,vec<ll>as){
ll d=n-1;
while(~d&1)d>>=1;
if((ll)modular::mod()!=n)modular::set_mod(n);
modular one=1,minus_one=n-1;
fe(as,a){
if(a%n==0)continue;
ll t=d;
modular y=modular(a).pow(t);
while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1;
if(y!=minus_one&&~t&1)return 0;
}
return 1;
}
bool is_prime(ll n){
if(~n&1)return n==2;
if(n<=1)return 0;
if(n<4759123141LL)return miller_rabin<montgomery64>(n,{2,7,61});
return miller_rabin<montgomery64>(n,{2,325,9375,28178,450775,9780504,1795265022});
}
template<class modular>ll pollard_rho(ll n){
if(~n&1)return 2;
if(is_prime(n))return n;
if((ll)modular::mod()!=n)modular::set_mod(n);
modular R,one=1;
auto f=[&](const modular&x){return x*x+R;};
while(1){
modular x,y,ys,q=one;
R=rand(2,n),y=rand(2,n);
ll g=1;
constexpr ll m=128;
for(ll r=1;g==1;r<<=1){
x=y;
fo(r)y=f(y);
for(ll k=0;g==1&&k<r;k+=m){
ys=y;
for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y));
g=std::gcd(q.val(),n);
}
}
if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1);
if(g!=n)return g;
}
}
auto factorize(ll n){
assert(n>0);
auto f=[](auto&f,ll m){
if(m==1)return vec<ll>{};
ll d=pollard_rho<montgomery64>(m);
return d==m?vec<ll>{d}:f(f,d)^f(f,m/d);
};
return rce(f(f,n));
}
template<class T,class U>common_type_t<T,U>gcd(T a,U b){return b?gcd(b,a%b):a>0?a:-a;}
template<class...A>auto gcd(const A&...a){common_type_t<A...>r=0;((r=gcd(r,a)),...);return r;}
auto mod(auto a,auto m){return(a%=m)<0?a+m:a;}
auto inv_mod(auto x,auto m){assert(gcd(x,m)==1);decltype(x)a=mod(x,m),b=m,u=1,v=0;while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return mod(u,m);}
auto pow_mod(auto x,auto n,auto m){if(n<0)n=-n,x=inv_mod(x,m);decltype(x)r=1;while(n){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;}
ll kth_root_mod_prime(ll a,ll k,ll P){
if(k==0)return(a==1?1:-1);
if(a==0)return 0;
if(P==2)return a;
k=mod(k,P-1);
ll g=gcd(k,P-1);
if(pow_mod((lll)a,(P-1)/g,P)!=1)return-1;
ll c=inv_mod((lll)k/g,(P-1)/g);
a=pow_mod((lll)a,c,P);
k=(lll)k*c%(P-1);
if(k==0)return(a==1?1:-1);
if(a==0)return 0;
auto pe_root=[&](lll c,ll p,ll e){
ll t=0;
ll pt=1;
ll s=P-1;
while(s%p==0)++t,s/=p;
lll v=1;
while(pow_mod(v,(P-1)/p,P)==1)++v;
ll pe=pw(p,e);
ll u=inv_mod(-s,pe);
lll z=pow_mod(c,((lll)s*u+1)/pe,P);
ll c_inv=inv_mod(c,P);
while(1){
lll zpe=pow_mod(z,pe,P);
lll zpe_c=mod(zpe*c_inv,P);
ll t_dash=0;
while(pow_mod(zpe_c,pw(p,t_dash),P)!=1)++t_dash;
if(t_dash==0)break;
ll E=t-t_dash;
lll vspE=pow_mod(v,(lll)s*pw(p,E-e),P);
lll A=pow_mod(v,(lll)s*pw(p,t-1),P),A_inv=inv_mod(A,P);
lll B=pow_mod(inv_mod(zpe_c,P),pw(p,t_dash-1),P);
ll R=sqrt_floor(p)+1;
unordered_map<ll,ll>dict;
ll k=-1;
fo(i,R)dict[mod(B*pow_mod(A_inv,R*i,P),P)]=i;
fo(j,R)if(ll key=pow_mod(A,j,P);dict.contains(key))k=R*dict[key]+j;
z=mod(z*pow_mod(vspE,k,P),P);
assert(k!=-1);
}
return z;
};
fe(factorize(k),p,e)a=pe_root(a,p,e);
return a;
}
single_testcase
void solve(){
LL(T);
fo(T){
LL(P,k,a);
pp(kth_root_mod_prime(a,k,P));
}
}}