結果
| 問題 |
No.439 チワワのなる木
|
| ユーザー |
|
| 提出日時 | 2024-11-03 09:50:38 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 18,173 bytes |
| コンパイル時間 | 333 ms |
| コンパイル使用メモリ | 82,480 KB |
| 実行使用メモリ | 142,480 KB |
| 最終ジャッジ日時 | 2024-11-03 09:50:51 |
| 合計ジャッジ時間 | 12,179 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 11 WA * 17 |
ソースコード
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
from collections import *
from functools import *
from heapq import *
from itertools import *
import sys, math,random
# input = sys.stdin.buffer.readline
# sys.setrecursionlimit(10**6)
def cle(a, D):
"""
Counts the number of elements in D that are less than or equal to a.
Parameters:
a (int): The value to compare against.
D (list): A sorted list of integers.
Returns:
int: The count of elements in D that are less than or equal to a.
"""
y = len(D) - 1
x = 0
if D[x] > a:
return 0
if D[y] <= a:
return y + 1
while y - x > 1:
mid = (y + x) // 2
if D[mid] <= a:
x = mid
else:
y = mid
return y
class cs_2d:
"""
2D cumulative sum class.
"""
def __init__(self, x):
"""
Initializes the 2D cumulative sum array.
Parameters:
x (list of list of int): A 2D list of integers.
"""
n = len(x)
m = len(x[0])
self.n = n
self.m = m
tmp = [0] * ((n + 1) * (m + 1))
for i in range(n):
for j in range(m):
tmp[m * (i + 1) + j + 1] = (
tmp[m * (i + 1) + j] + tmp[m * i + j + 1] - tmp[m * i + j] + x[i][j]
)
self.S = tmp
def query(self, ix, jx, iy, jy):
"""
Queries the sum of the submatrix from (ix, iy) to (jx, jy).
Parameters:
ix (int): Starting row index.
jx (int): Ending row index.
iy (int): Starting column index.
jy (int): Ending column index.
Returns:
int: The sum of the submatrix.
"""
return (
self.S[self.m * jx + jy]
- self.S[self.m * jx + iy]
- self.S[self.m * ix + jy]
+ self.S[self.m * ix + iy]
)
class prime_factorize:
"""
Class for prime factorization and related operations.
"""
def __init__(self, M=10**6):
"""
Initializes the sieve for prime factorization.
Parameters:
M (int): The maximum number to factorize.
"""
self.sieve = [-1] * (M + 1)
self.sieve[1] = 1
self.p = [False] * (M + 1)
self.mu = [1] * (M + 1)
for i in range(2, M + 1):
if self.sieve[i] == -1:
self.p[i] = True
i2 = i**2
for j in range(i2, M + 1, i2):
self.mu[j] = 0
for j in range(i, M + 1, i):
self.sieve[j] = i
self.mu[j] *= -1
def factors(self, x):
"""
Returns the prime factors of x.
Parameters:
x (int): The number to factorize.
Returns:
list: A list of prime factors of x.
"""
tmp = []
while self.sieve[x] != x:
tmp.append(self.sieve[x])
x //= self.sieve[x]
tmp.append(self.sieve[x])
return tmp
def divisors(self, x):
"""
Returns all divisors of x.
Parameters:
x (int): The number to find divisors for.
Returns:
list: A sorted list of all divisors of x.
"""
C = Counter(self.factors(x))
tmp = []
for p in product(*[[pow(k, i) for i in range(v + 1)] for k, v in C.items()]):
res = 1
for pp in p:
res *= pp
tmp.append(res)
tmp.sort()
return tmp
def is_prime(self, x):
"""
Checks if x is a prime number.
Parameters:
x (int): The number to check.
Returns:
bool: True if x is prime, False otherwise.
"""
return self.p[x]
def mobius(self, x):
"""
Returns the Möbius function value of x.
Parameters:
x (int): The number to find the Möbius function value for.
Returns:
int: The Möbius function value of x.
"""
return self.mu[x]
class combination:
"""
Class for computing combinations (nCr) modulo p.
"""
def __init__(self, N, p):
"""
Initializes the combination class.
Parameters:
N (int): The maximum value of n.
p (int): The modulus.
"""
self.fact = [1, 1] # fact[n] = (n! mod p)
self.factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)
self.inv = [0, 1] # factinv calculation
self.p = p
for i in range(2, N + 1):
self.fact.append((self.fact[-1] * i) % p)
self.inv.append((-self.inv[p % i] * (p // i)) % p)
self.factinv.append((self.factinv[-1] * self.inv[-1]) % p)
def cmb(self, n, r):
"""
Computes the combination (nCr) modulo p.
Parameters:
n (int): The total number of items.
r (int): The number of items to choose.
Returns:
int: The value of nCr modulo p.
"""
if (r < 0) or (n < r):
return 0
r = min(r, n - r)
return self.fact[n] * self.factinv[r] * self.factinv[n - r] % self.p
def md(n):
"""
Returns all divisors of n.
Parameters:
n (int): The number to find divisors for.
Returns:
list: A sorted list of all divisors of n.
"""
lower_divisors, upper_divisors = [], []
i = 1
while i * i <= n:
if n % i == 0:
lower_divisors.append(i)
if i != n // i:
upper_divisors.append(n // i)
i += 1
return lower_divisors + upper_divisors[::-1]
class DSU:
"""
Disjoint Set Union (Union-Find) class.
"""
def __init__(self, n):
"""
Initializes the DSU.
Parameters:
n (int): The number of elements.
"""
self._n = n
self.parent_or_size = [-1] * n
self.member = [[i] for i in range(n)]
self._max = [i for i in range(n)]
self._min = [i for i in range(n)]
def merge(self, a, b):
"""
Merges the sets containing a and b.
Parameters:
a (int): An element in the first set.
b (int): An element in the second set.
Returns:
int: The leader of the merged set.
"""
assert 0 <= a < self._n
assert 0 <= b < self._n
x, y = self.leader(a), self.leader(b)
if x == y:
return x
if -self.parent_or_size[x] < -self.parent_or_size[y]:
x, y = y, x
self.parent_or_size[x] += self.parent_or_size[y]
self._max[x] = max(self._max[x],self._max[y])
self._min[x] = min(self._min[x],self._min[y])
for tmp in self.member[y]:
self.member[x].append(tmp)
self.parent_or_size[y] = x
return x
def get_max(self,x):
return self._max[self.leader(x)]
def get_min(self,x):
return self._min[self.leader(x)]
def members(self, a):
"""
Returns the members of the set containing a.
Parameters:
a (int): An element in the set.
Returns:
list: A list of members in the set containing a.
"""
return self.member[self.leader(a)]
def same(self, a, b):
"""
Checks if a and b are in the same set.
Parameters:
a (int): An element in the first set.
b (int): An element in the second set.
Returns:
bool: True if a and b are in the same set, False otherwise.
"""
assert 0 <= a < self._n
assert 0 <= b < self._n
return self.leader(a) == self.leader(b)
def leader(self, a):
"""
Finds the leader of the set containing a.
Parameters:
a (int): An element in the set.
Returns:
int: The leader of the set containing a.
"""
assert 0 <= a < self._n
if self.parent_or_size[a] < 0:
return a
self.parent_or_size[a] = self.leader(self.parent_or_size[a])
return self.parent_or_size[a]
def size(self, a):
"""
Returns the size of the set containing a.
Parameters:
a (int): An element in the set.
Returns:
int: The size of the set containing a.
"""
assert 0 <= a < self._n
return -self.parent_or_size[self.leader(a)]
def groups(self):
"""
Returns all sets as a list of lists.
Returns:
list: A list of lists, where each list contains the members of a set.
"""
leader_buf = [self.leader(i) for i in range(self._n)]
result = [[] for _ in range(self._n)]
for i in range(self._n):
result[leader_buf[i]].append(i)
return [r for r in result if r != []]
class SegTree:
"""
Segment Tree class.
"""
def __init__(self, init_val, segfunc, ide_ele):
"""
Initializes the Segment Tree.
Parameters:
init_val (list): The initial values for the leaves of the tree.
segfunc (function): The function to use for segment operations.
ide_ele (any): The identity element for the segment function.
"""
n = len(init_val)
self.segfunc = segfunc
self.ide_ele = ide_ele
self.num = 1 << (n - 1).bit_length()
self.tree = [ide_ele] * 2 * self.num
# Set the initial values to the leaves
for i in range(n):
self.tree[self.num + i] = init_val[i]
# Build the tree
for i in range(self.num - 1, 0, -1):
self.tree[i] = segfunc(self.tree[2 * i], self.tree[2 * i + 1])
def update(self, k, x):
"""
Updates the k-th value to x.
Parameters:
k (int): The index to update (0-indexed).
x (any): The new value.
"""
k += self.num
self.tree[k] = x
while k > 1:
tk = k >> 1
self.tree[tk] = self.segfunc(self.tree[tk << 1], self.tree[(tk << 1) + 1])
k >>= 1
def get(self, x):
return self.tree[x + self.num]
def query(self, l, r):
"""
Queries the segment function result for the range [l, r).
Parameters:
l (int): The start index (0-indexed).
r (int): The end index (0-indexed).
Returns:
any: The result of the segment function for the range [l, r).
"""
res_l = self.ide_ele
res_r = self.ide_ele
l += self.num
r += self.num
while l < r:
if l & 1:
res_l = self.segfunc(res_l, self.tree[l])
l += 1
if r & 1:
res_r = self.segfunc(self.tree[r - 1], res_r)
l >>= 1
r >>= 1
res = self.segfunc(res_l, res_r)
return res
class RSQandRAQ():
"""区間加算、区間取得クエリをそれぞれO(logN)で答える
add: 区間[l, r)にvalを加える
query: 区間[l, r)の和を求める
l, rは0-indexed
"""
def __init__(self, n, mod=None):
self.n = n
self.bit0 = [0] * (n + 1)
self.bit1 = [0] * (n + 1)
self.mod = mod
def _add(self, bit, i, val):
i = i + 1
while i <= self.n:
if self.mod is None:
bit[i] += val
else:
bit[i] = (bit[i]+val)%self.mod
i += i & -i
def _get(self, bit, i):
s = 0
while i > 0:
if self.mod is None:
s += bit[i]
else:
s = (s + bit[i])%self.mod
i-= i & -i
return s
def add(self, l, r, val):
"""区間[l, r)にvalを加える"""
self._add(self.bit0, l, -val * l)
self._add(self.bit0, r, val * r)
self._add(self.bit1, l, val)
self._add(self.bit1, r, -val)
def query(self, l, r):
"""区間[l, r)の和を求める"""
_res = (self._get(self.bit0, r) + r * self._get(self.bit1, r)
- self._get(self.bit0, l) - l * self._get(self.bit1, l) )
if self.mod is None:
return _res
else:
return _res%self.mod
class Dinic:
def __init__(self, n):
self.n = n
self.links = [[] for _ in range(n)]
self.depth = None
self.progress = None
def add_link(self, _from, to, cap):
self.links[_from].append([cap, to, len(self.links[to])])
self.links[to].append([0, _from, len(self.links[_from]) - 1])
def bfs(self, s):
depth = [-1] * self.n
depth[s] = 0
q = deque([s])
while q:
v = q.popleft()
for cap, to, rev in self.links[v]:
if cap > 0 and depth[to] < 0:
depth[to] = depth[v] + 1
q.append(to)
self.depth = depth
def dfs(self, v, t, flow):
if v == t:
return flow
links_v = self.links[v]
for i in range(self.progress[v], len(links_v)):
self.progress[v] = i
cap, to, rev = link = links_v[i]
if cap == 0 or self.depth[v] >= self.depth[to]:
continue
d = self.dfs(to, t, min(flow, cap))
if d == 0:
continue
link[0] -= d
self.links[to][rev][0] += d
return d
return 0
def max_flow(self, s, t):
flow = 0
while True:
self.bfs(s)
if self.depth[t] < 0:
return flow
self.progress = [0] * self.n
current_flow = self.dfs(s, t, float('inf'))
while current_flow > 0:
flow += current_flow
current_flow = self.dfs(s, t, float('inf'))
class HLD():
### HL分解をしてIDを振りなおしたものに対して、パスに含まれる区間を返す
### SegTreeにのせる配列はIDを並び替えたもの
def __init__(self,e,root=0):
self.N = len(e)
self.e = e
par = [-1]*self.N
sub = [-1]*self.N
self.root = root
dist = [-1]*self.N
v = deque()
dist[root]=0
v.append(root)
while v:
x = v.popleft()
for ix in e[x]:
if dist[ix] !=-1:
continue
dist[ix] = dist[x] + 1
v.append(ix)
H = [(-dist[i],i) for i in range(self.N)]
H.sort()
for h,i in H:
tmp = 1
for ix in e[i]:
if sub[ix] == -1:
par[i]= ix
else:
tmp += sub[ix]
sub[i] = tmp
self.ID = [-1]*self.N
self.ID[self.root]=0
self.HEAD = [-1]*self.N
head = [-1]*self.N
self.PAR = [-1]*self.N
visited = [False]*self.N
self.HEAD[0]=0
head[self.root]=0
depth = [-1]*self.N
depth[self.root]=0
self.DEPTH = [-1]*self.N
self.DEPTH[0]=0
cnt = 0
v = deque([self.root])
self.SUB = [0]*self.N
self.SUB[0] = self.N
while v:
x = v.popleft()
visited[x]=True
self.ID[x]=cnt
cnt += 1
n = len(self.e[x])
tmp = [(sub[ix],ix) for ix in self.e[x]]
tmp.sort()
flg = 0
if x==self.root:
flg -= 1
for _,ix in tmp:
flg += 1
if visited[ix]:
continue
v.appendleft(ix)
if flg==n-1:
head[ix] = head[x]
depth[ix] = depth[x]
else:
head[ix] = ix
depth[ix] = depth[x]+1
for i in range(self.N):
self.PAR[self.ID[i]] = self.ID[par[i]]
self.HEAD[self.ID[i]] = self.ID[head[i]]
self.DEPTH[self.ID[i]] = depth[i]
self.SUB[self.ID[i]] = sub[i]
def path_query(self,l,r):
L = self.ID[l]
R = self.ID[r]
res = []
if self.DEPTH[L]<self.DEPTH[R]:
L,R = R,L
while self.DEPTH[L] != self.DEPTH[R]:
tmp = (self.HEAD[L],L+1)
res.append(tmp)
L = self.PAR[self.HEAD[L]]
while self.HEAD[L] != self.HEAD[R]:
tmp = (self.HEAD[L],L+1)
res.append(tmp)
L = self.PAR[self.HEAD[L]]
tmp = (self.HEAD[R],R+1)
res.append(tmp)
R = self.PAR[self.HEAD[R]]
if L>R:
L,R = R,L
tmp = (L,R+1)
res.append(tmp)
return res
def sub_query(self,k):
K = self.ID[k]
return (K,K+self.SUB[K])
class HLD_SegTree:
def __init__(self,e,init_val,segfunc,ide_ele,root=0):
self.hld = HLD(e,root = root)
self.ID = self.hld.ID[:]
self.N = len(e)
A = [0]*self.N
for i,idx in enumerate(self.ID):
A[idx] = init_val[i]
self.seg = SegTree(A,segfunc,ide_ele)
self.segfunc = segfunc
self.ide_ele = ide_ele
def path_query(self,l,r):
res = self.ide_ele
for _l,_r in self.hld.path_query(l,r):
res = self.segfunc(res,self.seg.query(_l,_r))
return res
def sub_query(self,x):
_l,_r = self.hld.sub_query(x)
return self.seg.query(_l,_r)
N = int(input())
S = list(input())
e = [[] for _ in range(N)]
for _ in range(N-1):
a,b = map(int,input().split())
a -= 1
b -= 1
e[a].append(b)
e[b].append(a)
C = [int(s=='c') for s in S]
hld = HLD_SegTree(e,C,lambda x,y:x+y,0,0)
hld2 = HLD_SegTree(e,[1-c for c in C],lambda x,y:x+y,0,0)
M = sum(C)
ans = 0
for i in range(N):
if S[i]=='c':
continue
cc0 = hld.sub_query(i)
mm0 = hld2.sub_query(i) - 1
cc1 = M - cc0
mm1 = N - 1 - cc0 - cc1 - mm0
ans = (ans + cc1*mm0 + cc0*mm1)
print(ans)