結果
問題 | No.1043 直列大学 |
ユーザー | ntuda |
提出日時 | 2024-11-08 19:30:58 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 4,251 bytes |
コンパイル時間 | 999 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 119,296 KB |
最終ジャッジ日時 | 2024-11-08 19:31:05 |
合計ジャッジ時間 | 6,031 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | AC | 70 ms
67,584 KB |
testcase_02 | RE | - |
testcase_03 | AC | 71 ms
67,712 KB |
testcase_04 | AC | 74 ms
67,456 KB |
testcase_05 | AC | 71 ms
67,712 KB |
testcase_06 | AC | 70 ms
67,456 KB |
testcase_07 | AC | 70 ms
67,584 KB |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | AC | 141 ms
82,560 KB |
testcase_29 | AC | 102 ms
78,720 KB |
testcase_30 | AC | 203 ms
92,288 KB |
ソースコード
import typing def _ceil_pow2(n: int) -> int: x = 0 while (1 << x) < n: x += 1 return x def _bsf(n: int) -> int: x = 0 while n % 2 == 0: x += 1 n //= 2 return x class SegTree: def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any], e: typing.Any, v: typing.Union[int, typing.List[typing.Any]]) -> None: self._op = op self._e = e if isinstance(v, int): v = [e] * v self._n = len(v) self._log = _ceil_pow2(self._n) self._size = 1 << self._log self._d = [e] * (2 * self._size) for i in range(self._n): self._d[self._size + i] = v[i] for i in range(self._size - 1, 0, -1): self._update(i) def set(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += self._size self._d[p] = x for i in range(1, self._log + 1): self._update(p >> i) def get(self, p: int) -> typing.Any: assert 0 <= p < self._n return self._d[p + self._size] def prod(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n sml = self._e smr = self._e left += self._size right += self._size while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self) -> typing.Any: return self._d[1] def max_right(self, left: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= left <= self._n assert f(self._e) if left == self._n: return self._n left += self._size sm = self._e first = True while first or (left & -left) != left: first = False while left % 2 == 0: left >>= 1 if not f(self._op(sm, self._d[left])): while left < self._size: left *= 2 if f(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left - self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= right <= self._n assert f(self._e) if right == 0: return 0 right += self._size sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right % 2: right >>= 1 if not f(self._op(self._d[right], sm)): while right < self._size: right = 2 * right + 1 if f(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right + 1 - self._size sm = self._op(self._d[right], sm) return 0 def _update(self, k: int) -> None: self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1]) MOD = 10 ** 9 + 7 N, M = map(int, input().split()) V = list(map(int, input().split())) R = list(map(int, input().split())) A, B = map(int, input().split()) sumv = sum(V) sumr = sum(R) dpv = [0] * (sumv + 10) dpr = [0] * (sumr + 1) dpv[0] = 1 dpr[0] = 1 for v in V: for i in reversed(range(sumv - v + 1)): dpv[i + v] += dpv[i] for r in R: for i in reversed(range(sumr - r + 1)): dpr[i + r] += dpr[i] dpv[0] = 0 dpr[0] = 0 ST = SegTree(lambda x,y:x+y, 0, dpv) ans = 0 #print(dpv) #print(dpr) for r in range(sumr+1): if dpr[r] > 0: minv = min(A * r, sumv + 10) maxv = min(B * r, sumv + 10) ans += dpr[r] * ST.prod(minv,maxv + 1) ans %= MOD #print(r,dpr[r],minv,maxv,ans) print(ans)