結果

問題 No.2954 Calculation of Exponentiation
ユーザー lif4635
提出日時 2024-11-08 21:29:57
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 181 ms / 2,000 ms
コード長 4,248 bytes
コンパイル時間 236 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 88,576 KB
最終ジャッジ日時 2024-11-08 21:30:03
合計ジャッジ時間 6,492 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def II(): return int(input())
def MI(): return map(int, input().split())
def TI(): return tuple(MI())
def LI(): return list(MI())
#str-input
def SI(): return input()
def MSI(): return input().split()
def SI_L(): return list(SI())
def SI_LI(): return list(map(int, SI()))
#multiple-input
def LLI(n): return [LI() for _ in range(n)]
def LSI(n): return [SI() for _ in range(n)]
#1-index0-indexinput
def MI_1(): return map(lambda x:int(x)-1, input().split())
def TI_1(): return tuple(MI_1())
def LI_1(): return list(MI_1())
class fenwick_tree():
n=1
data=[0 for i in range(n)]
def __init__(self,N):
self.n=N
self.data=[0 for i in range(N)]
def add(self,p,x):
assert 0<=p<self.n,"0<=p<n,p={0},n={1}".format(p,self.n)
p+=1
while(p<=self.n):
self.data[p-1]+=x
p+=p& -p
def sum(self,l,r):
assert (0<=l and l<=r and r<=self.n),"0<=l<=r<=n,l={0},r={1},n={2}".format(l,r,self.n)
return self.sum0(r)-self.sum0(l)
def sum0(self,r):
s=0
while(r>0):
s+=self.data[r-1]
r-=r&-r
return s
class dsu():
n=1
parent_or_size=[-1 for i in range(n)]
def __init__(self,N):
self.n=N
self.parent_or_size=[-1 for i in range(N)]
def merge(self,a,b):
assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)
assert 0<=b<self.n, "0<=b<n,b={0},n={1}".format(b,self.n)
x=self.leader(a)
y=self.leader(b)
if x==y:
return x
if (-self.parent_or_size[x]<-self.parent_or_size[y]):
x,y=y,x
self.parent_or_size[x]+=self.parent_or_size[y]
self.parent_or_size[y]=x
return x
def same(self,a,b):
assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)
assert 0<=b<self.n, "0<=b<n,b={0},n={1}".format(b,self.n)
return self.leader(a)==self.leader(b)
def leader(self,a):
assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)
if (self.parent_or_size[a]<0):
return a
self.parent_or_size[a]=self.leader(self.parent_or_size[a])
return self.parent_or_size[a]
def size(self,a):
assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)
return -self.parent_or_size[self.leader(a)]
def groups(self):
leader_buf=[0 for i in range(self.n)]
group_size=[0 for i in range(self.n)]
for i in range(self.n):
leader_buf[i]=self.leader(i)
group_size[leader_buf[i]]+=1
result=[[] for i in range(self.n)]
for i in range(self.n):
result[leader_buf[i]].append(i)
result2=[]
for i in range(self.n):
if len(result[i])>0:
result2.append(result[i])
return result2
def lis(l): #
n = len(l)
tmp = [] # i使
idxlist = [None] * n # l[i]使
for i in range(n):
numidx = bisect_right(tmp, l[i])
if numidx == len(tmp):
tmp.append(l[i])
else:
tmp[numidx] = l[i]
idxlist[i] = numidx
# LIS
look = len(tmp) - 1
ans = [0] * (look + 1)
idx = [0] * (look + 1)
#
for i in range(n-1,-1,-1):
if idxlist[i] == look:
ans[look] = l[i] # ans
idx[look] = i
look -= 1
return ans,idx
from bisect import bisect_left,bisect_right
from fractions import Fraction
def primefact(n:int): #
""""""
p = 2
pf = dict()
while p*p <= n:
if n%p == 0:
cnt = 0
while n%p == 0:
n //= p
cnt += 1
pf[p] = cnt
p += 1
if n != 1:
pf[n] = 1
return pf
from math import comb,ceil,floor,factorial,gcd
a,b = input().split()
a = Fraction(a)
b = Fraction(b)
if b == 0:
print("Yes")
exit()
if b < 0:
b = -b
a = 1/a
if a != int(a):
print("No")
else:
k = primefact(int(a))
e = [i for i in k.values()]
t = gcd(*e)
b *= t
if b != int(b):
print("No")
else:
print("Yes")
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0