結果
問題 | No.2954 Calculation of Exponentiation |
ユーザー |
|
提出日時 | 2024-11-08 21:29:57 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 181 ms / 2,000 ms |
コード長 | 4,248 bytes |
コンパイル時間 | 236 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 88,576 KB |
最終ジャッジ日時 | 2024-11-08 21:30:03 |
合計ジャッジ時間 | 6,492 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 28 |
ソースコード
def II(): return int(input())def MI(): return map(int, input().split())def TI(): return tuple(MI())def LI(): return list(MI())#str-inputdef SI(): return input()def MSI(): return input().split()def SI_L(): return list(SI())def SI_LI(): return list(map(int, SI()))#multiple-inputdef LLI(n): return [LI() for _ in range(n)]def LSI(n): return [SI() for _ in range(n)]#1-indexを0-indexでinputdef MI_1(): return map(lambda x:int(x)-1, input().split())def TI_1(): return tuple(MI_1())def LI_1(): return list(MI_1())class fenwick_tree():n=1data=[0 for i in range(n)]def __init__(self,N):self.n=Nself.data=[0 for i in range(N)]def add(self,p,x):assert 0<=p<self.n,"0<=p<n,p={0},n={1}".format(p,self.n)p+=1while(p<=self.n):self.data[p-1]+=xp+=p& -pdef sum(self,l,r):assert (0<=l and l<=r and r<=self.n),"0<=l<=r<=n,l={0},r={1},n={2}".format(l,r,self.n)return self.sum0(r)-self.sum0(l)def sum0(self,r):s=0while(r>0):s+=self.data[r-1]r-=r&-rreturn sclass dsu():n=1parent_or_size=[-1 for i in range(n)]def __init__(self,N):self.n=Nself.parent_or_size=[-1 for i in range(N)]def merge(self,a,b):assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)assert 0<=b<self.n, "0<=b<n,b={0},n={1}".format(b,self.n)x=self.leader(a)y=self.leader(b)if x==y:return xif (-self.parent_or_size[x]<-self.parent_or_size[y]):x,y=y,xself.parent_or_size[x]+=self.parent_or_size[y]self.parent_or_size[y]=xreturn xdef same(self,a,b):assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)assert 0<=b<self.n, "0<=b<n,b={0},n={1}".format(b,self.n)return self.leader(a)==self.leader(b)def leader(self,a):assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)if (self.parent_or_size[a]<0):return aself.parent_or_size[a]=self.leader(self.parent_or_size[a])return self.parent_or_size[a]def size(self,a):assert 0<=a<self.n, "0<=a<n,a={0},n={1}".format(a,self.n)return -self.parent_or_size[self.leader(a)]def groups(self):leader_buf=[0 for i in range(self.n)]group_size=[0 for i in range(self.n)]for i in range(self.n):leader_buf[i]=self.leader(i)group_size[leader_buf[i]]+=1result=[[] for i in range(self.n)]for i in range(self.n):result[leader_buf[i]].append(i)result2=[]for i in range(self.n):if len(result[i])>0:result2.append(result[i])return result2def lis(l): #最長増加部分列n = len(l)tmp = [] # いまi文字目に使える最小idxlist = [None] * n # l[i]が使われた場所for i in range(n):numidx = bisect_right(tmp, l[i])if numidx == len(tmp):tmp.append(l[i])else:tmp[numidx] = l[i]idxlist[i] = numidx# LIS復元look = len(tmp) - 1ans = [0] * (look + 1)idx = [0] * (look + 1)# 後ろから見ていくfor i in range(n-1,-1,-1):if idxlist[i] == look:ans[look] = l[i] # ansを確定idx[look] = ilook -= 1return ans,idxfrom bisect import bisect_left,bisect_rightfrom fractions import Fractiondef primefact(n:int): #素因数分解"""素因数分解"""p = 2pf = dict()while p*p <= n:if n%p == 0:cnt = 0while n%p == 0:n //= pcnt += 1pf[p] = cntp += 1if n != 1:pf[n] = 1return pffrom math import comb,ceil,floor,factorial,gcda,b = input().split()a = Fraction(a)b = Fraction(b)if b == 0:print("Yes")exit()if b < 0:b = -ba = 1/aif a != int(a):print("No")else:k = primefact(int(a))e = [i for i in k.values()]t = gcd(*e)b *= tif b != int(b):print("No")else:print("Yes")