結果

問題 No.2955 Pizza Delivery Plan
ユーザー TKTYI
提出日時 2024-11-08 21:45:07
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 190 ms / 2,000 ms
コード長 3,285 bytes
コンパイル時間 6,073 ms
コンパイル使用メモリ 325,880 KB
実行使用メモリ 58,240 KB
最終ジャッジ日時 2024-11-08 21:45:24
合計ジャッジ時間 11,313 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
typedef long long int ll;
typedef long double ld;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef vector<vvi> vvvi;
typedef vector<vvvi> vvvvi;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<vvb> vvvb;
typedef vector<vvvb> vvvvb;
typedef pair<ll,ll> pi;
typedef pair<ll,pi> ppi;
typedef pair<ll,ppi> pppi;
typedef pair<ll,pppi> ppppi;
#define FOR(i,l,r) for(ll i=l;i<r;i++)
#define REP(i,n) FOR(i,0,n)
#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)
#define RREP(i,n) RFOR(i,0,n)
#define ALL(x) x.begin(),x.end()
#define F first
#define S second
#define BS(A,x) binary_search(ALL(A),x)
#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())
#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())
#define COU(A,x) (UB(A,x)-LB(A,x))
#define sz(c) ((ll)(c).size())
/*
#include<boost/multiprecision/cpp_int.hpp>
namespace mp=boost::multiprecision;
using Bint=mp::cpp_int;
*/
template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;
template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>p){os<<p.F<<" "<<p.S;return os;}
template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}
template<typename T>ostream&operator<<(ostream&os,vector<T>v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?" ":"");return os;}
template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}
template<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}
ld dist(ld x1,ld y1,ld x2,ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}
vi fast_mod_convolution(vi&a,vi&b,ll mod){
const ll m1=167772161,m2=469762049,m3=1224736769;
const ll m1_inv_m2=inv_mod(m1,m2);
const ll m12_inv_m3=inv_mod(m1*m2,m3);
const ll m12_mod=m1*m2%mod;
auto x=convolution<m1>(a,b);
auto y=convolution<m2>(a,b);
auto z=convolution<m3>(a,b);
vector<ll>ret(sz(a)+sz(b)-1);
REP(i,sz(ret)){
ll v1=(y[i]-x[i])*m1_inv_m2%m2;if(v1<0)v1+=m2;
ll v2=(z[i]-(x[i]+m1*v1)%m3)*m12_inv_m3%m3;if(v2<0)v2+=m3;
ret[i]=(x[i]+m1*v1+m12_mod*v2)%mod;
}
return ret;
}
const ld EPS=1e-8;
//*
using mint=modint998244353;
const ll mod=998244353;
//*/
/*
using mint=modint1000000007;
const ll mod=1000000007;
//*/
//using mint=modint;
//*
typedef vector<mint> vm;
typedef vector<vm> vvm;
typedef vector<vvm> vvvm;
typedef vector<vvvm> vvvvm;
ostream&operator<<(ostream&os,mint a){os<<a.val();return os;}
istream&operator>>(istream&is,mint&a){int x;is>>x;a=mint(x);return is;}
//*/
int main(){
ll N,K;cin>>N>>K;
vector<pi>A(N);cin>>A;
vector<vector<vector<ld>>>D(N,vector<vector<ld>>(N,vector<ld>(1<<N,1e18)));
REP(i,N){
D[i][i][1<<i]=dist(0,0,A[i].F,A[i].S);
REP(j,1<<N)if((j>>i)%2){
REP(k,N)if((j>>k)%2)REP(l,N)if((j>>l)%2==0){
chmin(D[i][l][j+(1<<l)],D[i][k][j]+dist(A[k].F,A[k].S,A[l].F,A[l].S));
}
}
}
vector<ld>B(1<<N,1e18);
REP(i,N)REP(j,N)REP(k,1<<N)if(__builtin_popcount(k)<=K){
chmin(B[k],D[i][j][k]+dist(0,0,A[j].F,A[j].S));
}
vector<ld>DP(1<<N,1e18);
DP[0]=0;
REP(i,1<<N)for(ll j=i;j;j=(j-1)&i){
chmin(DP[i],DP[i-j]+B[j]);
}
printf("%.20Lf\n",DP.back());
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0