結果
問題 | No.2954 Calculation of Exponentiation |
ユーザー | Tatsu_mr |
提出日時 | 2024-11-08 21:48:27 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,439 bytes |
コンパイル時間 | 4,102 ms |
コンパイル使用メモリ | 261,428 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-08 21:48:42 |
合計ジャッジ時間 | 4,198 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 1 ms
5,248 KB |
testcase_15 | AC | 1 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 1 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 1 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> #define For(i, a, b) for(int i = a; i < b; i++) #define rep(i, n) For(i, 0, n) #define rFor(i, a, b) for(int i = a; i >= b; i--) #define ALL(v) (v).begin(), (v).end() #define rALL(v) (v).rbegin(), (v).rend() using namespace std; using lint = long long; using ld = long double; int INF = 2000000000; lint LINF = 1000000000000000000; struct Fraction { using lint = long long; private: lint gcd(lint x, lint y) { if (y == 0) { return x; } return gcd(y, x % y); } void reduce() { if (p != 0) { lint g = gcd(abs(p), abs(q)); p /= g; q /= g; } else { q = 1; } } int comp(lint a, lint b, lint c, lint d) const { if (a == c && b == d) { return 0; } return (a * d < c * b ? -1 : 1); } public: lint p, q; Fraction() : p(0), q(1) {} Fraction(lint p_, lint q_) : p(p_), q(q_) { assert(q_ != 0); if (q < 0) { p = -p; q = -q; } reduce(); } Fraction(lint p_) : p(p_), q(1) {} Fraction &operator+=(const Fraction &a) { lint np = p * a.q + q * a.p; lint nq = q * a.q; *this = Fraction(np, nq); return *this; } Fraction &operator-=(const Fraction &a) { lint np = p * a.q - q * a.p; lint nq = q * a.q; *this = Fraction(np, nq); return *this; } Fraction &operator*=(const Fraction &a) { lint np = p * a.p; lint nq = q * a.q; *this = Fraction(np, nq); return *this; } Fraction &operator/=(const Fraction &a) { assert(a.p != 0); lint np = p * a.q; lint nq = q * a.p; *this = Fraction(np, nq); return *this; } Fraction operator+(const Fraction &a) { return Fraction(*this) += a; } Fraction operator-(const Fraction &a) { return Fraction(*this) -= a; } Fraction operator*(const Fraction &a) { return Fraction(*this) *= a; } Fraction operator/(const Fraction &a) { return Fraction(*this) /= a; } Fraction operator-() { p = -p; return *this; } bool operator==(const Fraction &a) const { return comp(p, q, a.p, a.q) == 0; } bool operator!=(const Fraction &a) const { return comp(p, q, a.p, a.q) != 0; } bool operator<(const Fraction &a) const { return comp(p, q, a.p, a.q) == -1; } bool operator>(const Fraction &a) const { return comp(p, q, a.p, a.q) == 1; } bool operator<=(const Fraction &a) const { return comp(p, q, a.p, a.q) <= 0; } bool operator>=(const Fraction &a) const { return comp(p, q, a.p, a.q) >= 0; } friend ostream &operator<<(ostream &os, Fraction a) { return os << a.p << "/" << a.q; } }; namespace fastprime { template <class T> T modpow(T a, T b, T mod) { T cur = a % mod, res = 1 % mod; while (b) { if (b & 1) { res = (res * cur) % mod; } cur = (cur * cur) % mod; b >>= 1; } return res; } bool MillerRabin(long long n) { if (n <= 1) { return false; } if (n == 2 || n == 7 || n == 61) { return true; } if (n % 2 == 0) { return false; } vector<long long> A; if (n < 4759123141) { A = {2, 7, 61}; } else { A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; } long long s = 0, d = n - 1; while (d % 2 == 0) { s++; d >>= 1; } for (auto a : A) { if (a % n == 0) { return true; } long long x = modpow<__int128_t>(a, d, n); if (x == 1) { continue; } bool ok = false; for (int i = 0; i < s; i++) { if (x == n - 1) { ok = true; break; } x = (__int128_t)x * x % n; } if (!ok) { return false; } } return true; } long long gcd(long long x, long long y) { if (y == 0) { return x; } return gcd(y, x % y); } unsigned int xorshift() { static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123; unsigned int t = (x ^ (x << 11)); x = y; y = z; z = w; return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))); } long long Pollard(long long n) { if (n % 2 == 0) { return 2LL; } if (MillerRabin(n)) { return n; } long long i = 0; while (true) { i++; long long r = xorshift(); auto f = [&](long long x) { return (__int128_t(x) * x + r) % n; }; long long x = i, y = f(x); while (true) { long long p = gcd(abs(y - x + n), n); if (p == 0 || p == n) { break; } if (p != 1) { return p; } x = f(x); y = f(f(y)); } } } vector<long long> prime_factorize(long long n) { if (n == 1) { return {}; } long long p = Pollard(n); if (p == n) { return {p}; } vector<long long> l = prime_factorize(p); vector<long long> r = prime_factorize(n / p); for (auto x : r) { l.emplace_back(x); } sort(l.begin(), l.end()); return l; } vector<long long> divisors(long long n) { if (n == 1) { return {1LL}; } auto divisor_dfs = [&](auto divisor_dfs, vector<pair<long long, long long>> &p, long long t, int cur, vector<long long> &res) -> void { if (cur == p.size()) { res.emplace_back(t); return; } divisor_dfs(divisor_dfs, p, t, cur + 1, res); for (int i = 0; i < p[cur].second; i++) { t *= p[cur].first; divisor_dfs(divisor_dfs, p, t, cur + 1, res); } }; vector<long long> res, pf = prime_factorize(n); vector<pair<long long, long long>> p; long long cnt = 1, now = pf[0]; for (int i = 1; i < (int)pf.size(); i++) { if (pf[i] == now) { cnt++; } else { p.emplace_back(now, cnt); now = pf[i]; cnt = 1; } } p.emplace_back(now, cnt); divisor_dfs(divisor_dfs, p, 1, 0, res); sort(res.begin(), res.end()); return res; } } // namespace fastprime using namespace fastprime; template <class T> vector<pair<T, int>> RLE(vector<T> v) { vector<pair<T, int>> res; for (auto x : v) { if (res.size() == 0 || res.back().first != x) { res.emplace_back(x, 1); } else { res.back().second++; } } return res; } int main() { ld a, b; cin >> a >> b; if (b < 0) { cout << (a == 1.0000 ? "Yes" : "No") << endl; return 0; } lint pa = a * 10000, pb = b * 10000; Fraction A(pa, 10000LL), B(pb, 10000LL); if (A.q != 1) { cout << "No" << endl; return 0; } auto d = RLE(prime_factorize(A.p)); for (auto [fi, se] : d) { if (B.q != 0 && se % B.q != 0) { cout << "No" << endl; return 0; } } cout << "Yes" << endl; }