結果
問題 | No.2954 Calculation of Exponentiation |
ユーザー | dyktr_06 |
提出日時 | 2024-11-08 21:56:36 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,915 bytes |
コンパイル時間 | 2,356 ms |
コンパイル使用メモリ | 211,288 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-08 21:56:40 |
合計ジャッジ時間 | 3,392 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 3 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(n) for(int i = 0; i < (int)(n); ++i) #define rep2(i, n) for(int i = 0; i < (int)(n); ++i) #define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i) #define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i) #define ALL(a) (a).begin(), (a).end() #define Sort(a) (sort((a).begin(), (a).end())) #define RSort(a) (sort((a).rbegin(), (a).rend())) #define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end())) typedef long long int ll; typedef unsigned long long ul; typedef long double ld; typedef vector<int> vi; typedef vector<long long> vll; typedef vector<char> vc; typedef vector<string> vst; typedef vector<double> vd; typedef vector<long double> vld; typedef pair<long long, long long> P; template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); } template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); } template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); } const long long MINF = 0x7fffffffffff; const long long INF = 0x1fffffffffffffff; const long long MOD = 998244353; const long double EPS = 1e-9; const long double PI = acos(-1); template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; } template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; } template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; } template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; } template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; } template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; } template <typename T> long long binary_search(long long ok, long long ng, T check){ while(abs(ok - ng) > 1){ long long mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template <typename T> long double binary_search_real(long double ok, long double ng, T check, int iter = 100){ for(int i = 0; i < iter; ++i){ long double mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template <typename T> long long trisum(T a, T b){ long long res = ((b - a + 1) * (a + b)) / 2; return res; } template <typename T> T intpow(T x, int n){ T ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } template <typename T> T getReminder(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a % b; } else if(a < 0 && b > 0){ return ((a % b) + b) % b; } else if(a >= 0 && b < 0){ return a % b; } else{ return (abs(b) - abs(a % b)) % b; } } template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; } template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; } template<class... T> void in(T&... a){ (cin >> ... >> a); } void out(){ cout << '\n'; } template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } } struct GridUnionFind{ struct UnionFind{ vector<int> par; UnionFind(){} void init(int N){ par.resize(N); for(int i = 0; i < N; ++i){ par[i] = -1; } } int root(int x){ if(par[x] < 0) return x; return par[x] = root(par[x]); } void unite(int x, int y){ int rx = root(x); int ry = root(y); if(rx == ry){ return; } par[ry] = par[rx] + par[ry]; par[rx] = ry; } bool same(int x, int y){ int rx = root(x); int ry = root(y); return rx == ry; } long long size(int x){ return -par[root(x)]; } }; vector<string> grid; int h, w; UnionFind uf; char empty = '$'; GridUnionFind(int _h, int _w) : h(_h), w(_w){ grid = vector<string>(h, string(w, empty)); uf.init(h * w); } GridUnionFind(vector<string> &s){ grid = s; h = s.size(), w = s[0].size(); uf.init(h * w); } int id(int x, int y){ return x * w + y; } bool check(int x, int y){ return (clamp(x, 0, h - 1) == x && clamp(y, 0, w - 1) == y); } void build(){ vector<pair<int, int>> d = { {0, 1}, {1, 0} }; for(int i = 0; i < h; i++){ for(int j = 0; j < w; j++){ for(auto &[dx, dy] : d){ int tx = i + dx, ty = j + dy; if(check(tx, ty)){ if(grid[i][j] == grid[tx][ty] && grid[i][j] != empty){ uf.unite(id(i, j), id(tx, ty)); } } } } } } pair<int, int> root(int x, int y){ int r = uf.root(id(x, y)); return {r / w, r % w}; } bool same(int x1, int y1, int x2, int y2){ if(!check(x1, y1) || !check(x2, y2)){ return false; } return uf.same(id(x1, y1), id(x2, y2)); } void update(int x, int y, char c){ if(!check(x, y) || grid[x][y] != empty){ return; } vector<pair<int, int>> d = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; grid[x][y] = c; for(auto &[dx, dy] : d){ int tx = x + dx, ty = y + dy; if(check(tx, ty)){ if(grid[x][y] == grid[tx][ty] && grid[x][y] != empty){ uf.unite(id(x, y), id(tx, ty)); } } } } long long size(int x, int y){ return uf.size(id(x, y)); } }; template <typename T> struct fraction{ T p, q; // long long or BigInt fraction(T P = 0, T Q = 1) : p(P), q(Q){ normalize(); } void normalize(){ T g = __gcd(p, q); p /= g, q /= g; if(q < 0) p *= -1, q *= -1; } inline bool operator==(const fraction &other) const { return p * other.q == other.p * q; } inline bool operator!=(const fraction &other) const { return p * other.q != other.p * q; } inline bool operator<(const fraction &other) const { return p * other.q < other.p * q; } inline bool operator<=(const fraction &other) const { return p * other.q <= other.p * q; } inline bool operator>(const fraction &other) const { return p * other.q > other.p * q; } inline bool operator>=(const fraction &other) const { return p * other.q >= other.p * q; } inline fraction operator+(const fraction &other) const { return fraction(p * other.q + q * other.p, q * other.q); } inline fraction operator-(const fraction &other) const { return fraction(p * other.q - q * other.p, q * other.q); } inline fraction operator*(const fraction &other) const { return fraction(p * other.p, q * other.q); } inline fraction operator/(const fraction &other) const { return fraction(p * other.q, q * other.p); } inline fraction &operator+=(const fraction &rhs) noexcept { *this = *this + rhs; return *this; } inline fraction &operator-=(const fraction &rhs) noexcept { *this = *this - rhs; return *this; } inline fraction &operator*=(const fraction &rhs) noexcept { *this = *this * rhs; return *this; } inline fraction &operator/=(const fraction &rhs) noexcept { *this = *this / rhs; return *this; } friend inline istream &operator>>(istream &is, fraction &x) noexcept { is >> x.p; x.q = 1; return is; } friend inline ostream &operator<<(ostream &os, const fraction &x) noexcept { return os << x.p << "/" << x.q; } }; namespace prime{ template <typename T> bool isPrime(T n){ switch(n) { case 0: // fall-through case 1: return false; case 2: return true; } if(n % 2 == 0) return false; for(T i = 3; i * i <= n; i += 2){ if(n % i == 0){ return false; } } return true; } template <typename T> vector<pair<T, T>> factorize(T n) { vector<pair<T, T>> ret; for(T i = 2; i * i <= n; i++) { if(n % i != 0) continue; T tmp = 0; while(n % i == 0) { tmp++; n /= i; } ret.push_back(make_pair(i, tmp)); } if(n != 1) ret.push_back(make_pair(n, 1)); return ret; } template <typename T> vector<T> divisor(T n){ T rt = sqrt(n); vector<T> res, resB; for(T i = 1; i * i <= n; i++){ if(n % i == 0){ res.push_back(i); T j = n / i; if(j != rt){ resB.push_back(j); } } } for(int i = (int) resB.size() - 1; i >= 0; i--){ res.push_back(resB[i]); } return res; } } ll T; void input(){ in(T); } void solve(){ string a, b; in(a, b); ld lda = stold(a), ldb = stold(b); ll lla = stoll(a), llb = stoll(b); if(b[0] == '-' || floorl(lda) != lda){ out("No"); return; } fraction<ll> f(ldb * 10000, 10000); for(auto [p, q] : prime::factorize(lla)){ fraction<ll> g(q, 1); g *= f; g.normalize(); if(g.q != 1){ out("No"); return; } } out("Yes"); } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20); T = 1; // input(); while(T--) solve(); }