結果

問題 No.2954 Calculation of Exponentiation
ユーザー dyktr_06dyktr_06
提出日時 2024-11-08 22:00:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 11,954 bytes
コンパイル時間 2,182 ms
コンパイル使用メモリ 211,360 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-08 22:00:46
合計ジャッジ時間 3,105 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 1 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 1 ms
5,248 KB
testcase_23 WA -
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 1 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 1 ms
5,248 KB
testcase_30 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))

typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;

template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }

const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);

template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }

template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; }

template <typename T>
long long binary_search(long long ok, long long ng, T check){
    while(abs(ok - ng) > 1){
        long long mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long double binary_search_real(long double ok, long double ng, T check, int iter = 100){
    for(int i = 0; i < iter; ++i){
        long double mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long long trisum(T a, T b){
    long long res = ((b - a + 1) * (a + b)) / 2;
    return res;
}

template <typename T>
T intpow(T x, int n){
    T ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}

template <typename T>
T getReminder(T a, T b){
    if(b == 0) return -1;
    if(a >= 0 && b > 0){
        return a % b;
    } else if(a < 0 && b > 0){
        return ((a % b) + b) % b;
    } else if(a >= 0 && b < 0){
        return a % b;
    } else{
        return (abs(b) - abs(a % b)) % b;
    }
}

template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }

struct GridUnionFind{
    struct UnionFind{
        vector<int> par;

        UnionFind(){}

        void init(int N){
            par.resize(N);
            for(int i = 0; i < N; ++i){
                par[i] = -1;
            }
        }

        int root(int x){
            if(par[x] < 0) return x;
            return par[x] = root(par[x]);
        }

        void unite(int x, int y){
            int rx = root(x);
            int ry = root(y);
            if(rx == ry){
                return;
            }
            par[ry] = par[rx] + par[ry];
            par[rx] = ry;
        }

        bool same(int x, int y){
            int rx = root(x);
            int ry = root(y);
            return rx == ry;
        }

        long long size(int x){
            return -par[root(x)];
        }
    };

    vector<string> grid;
    int h, w;
    UnionFind uf;
    char empty = '$';

    GridUnionFind(int _h, int _w) : h(_h), w(_w){
        grid = vector<string>(h, string(w, empty));
        uf.init(h * w);
    }

    GridUnionFind(vector<string> &s){
        grid = s;
        h = s.size(), w = s[0].size();
        uf.init(h * w);
    }

    int id(int x, int y){
        return x * w + y;
    }

    bool check(int x, int y){
        return (clamp(x, 0, h - 1) == x && clamp(y, 0, w - 1) == y);
    }

    void build(){
        vector<pair<int, int>> d = {
            {0, 1},
            {1, 0}
        };
        for(int i = 0; i < h; i++){
            for(int j = 0; j < w; j++){
                for(auto &[dx, dy] : d){
                    int tx = i + dx, ty = j + dy;
                    if(check(tx, ty)){
                        if(grid[i][j] == grid[tx][ty] && grid[i][j] != empty){
                            uf.unite(id(i, j), id(tx, ty));
                        }
                    }
                }
            }
        }
    }

    pair<int, int> root(int x, int y){
        int r = uf.root(id(x, y));
        return {r / w, r % w};
    }

    bool same(int x1, int y1, int x2, int y2){
        if(!check(x1, y1) || !check(x2, y2)){
            return false;
        }
        return uf.same(id(x1, y1), id(x2, y2));
    }

    void update(int x, int y, char c){
        if(!check(x, y) || grid[x][y] != empty){
            return;
        }

        vector<pair<int, int>> d = {
            {-1, 0},
            {1, 0},
            {0, -1},
            {0, 1}
        };
        grid[x][y] = c;
        for(auto &[dx, dy] : d){
            int tx = x + dx, ty = y + dy;
            if(check(tx, ty)){
                if(grid[x][y] == grid[tx][ty] && grid[x][y] != empty){
                    uf.unite(id(x, y), id(tx, ty));
                }
            }
        }
    }

    long long size(int x, int y){
        return uf.size(id(x, y));
    }
};

template <typename T>
struct fraction{
    T p, q; // long long or BigInt
    fraction(T P = 0, T Q = 1) : p(P), q(Q){
        normalize();
    }
    void normalize(){
        T g = __gcd(p, q);
        p /= g, q /= g;
        if(q < 0) p *= -1, q *= -1;
    }
    inline bool operator==(const fraction &other) const {
        return p * other.q == other.p * q;
    }
    inline bool operator!=(const fraction &other) const {
        return p * other.q != other.p * q;
    }
    inline bool operator<(const fraction &other) const {
        return p * other.q < other.p * q;
    }
    inline bool operator<=(const fraction &other) const {
        return p * other.q <= other.p * q;
    }
    inline bool operator>(const fraction &other) const {
        return p * other.q > other.p * q;
    }
    inline bool operator>=(const fraction &other) const {
        return p * other.q >= other.p * q;
    }
    inline fraction operator+(const fraction &other) const { return fraction(p * other.q + q * other.p, q * other.q); }
    inline fraction operator-(const fraction &other) const { return fraction(p * other.q - q * other.p, q * other.q); }
    inline fraction operator*(const fraction &other) const { return fraction(p * other.p, q * other.q); }
    inline fraction operator/(const fraction &other) const { return fraction(p * other.q, q * other.p); }
    inline fraction &operator+=(const fraction &rhs) noexcept {
        *this = *this + rhs;
        return *this;
    }
    inline fraction &operator-=(const fraction &rhs) noexcept {
        *this = *this - rhs;
        return *this;
    }
    inline fraction &operator*=(const fraction &rhs) noexcept {
        *this = *this * rhs;
        return *this;
    }
    inline fraction &operator/=(const fraction &rhs) noexcept {
        *this = *this / rhs;
        return *this;
    }
    friend inline istream &operator>>(istream &is, fraction &x) noexcept {
        is >> x.p;
        x.q = 1;
        return is;
    }
    friend inline ostream &operator<<(ostream &os, const fraction &x) noexcept { return os << x.p << "/" << x.q; }
};

namespace prime{

    template <typename T>
    bool isPrime(T n){
        switch(n) {
        case 0: // fall-through
        case 1: return false;
        case 2: return true;
        }

        if(n % 2 == 0) return false;

        for(T i = 3; i * i <= n; i += 2){
            if(n % i == 0){
                return false;
            }
        }
        return true;
    }

    template <typename T>
    vector<pair<T, T>> factorize(T n) {
        vector<pair<T, T>> ret;
        for(T i = 2; i * i <= n; i++) {
            if(n % i != 0) continue;
            T tmp = 0;
            while(n % i == 0) {
                tmp++;
                n /= i;
            }
            ret.push_back(make_pair(i, tmp));
        }
        if(n != 1) ret.push_back(make_pair(n, 1));
        return ret;
    }

    template <typename T>
    vector<T> divisor(T n){
        T rt = sqrt(n);
        vector<T> res, resB;
        for(T i = 1; i * i <= n; i++){
            if(n % i == 0){
                res.push_back(i);
                T j = n / i;
                if(j != rt){
                    resB.push_back(j);
                }
            }
        }
        for(int i = (int) resB.size() - 1; i >= 0; i--){
            res.push_back(resB[i]);
        }
        return res;
    }
}

ll T;

void input(){
    in(T);
}

void solve(){
    ld eps = 0.00001;
    string a, b; in(a, b);
    ld lda = stold(a), ldb = stold(b);
    ll lla = stoll(a), llb = stoll(b);
    if(b[0] == '-' || abs(floorl(lda) - lda) >= eps){
        out("No");
        return;
    }
    fraction<ll> f(ldb * 10000 + eps, 10000);
    for(auto [p, q] : prime::factorize(lla)){
        fraction<ll> g(q, 1);
        g *= f;
        g.normalize();
        if(g.q != 1){
            out("No");
            return;
        }
    }
    out("Yes");
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(20);

    T = 1;
    // input();
    while(T--) solve();
}
0