結果
問題 | No.2954 Calculation of Exponentiation |
ユーザー |
|
提出日時 | 2024-11-08 22:20:46 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 9,602 bytes |
コンパイル時間 | 2,703 ms |
コンパイル使用メモリ | 207,512 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-08 22:20:50 |
合計ジャッジ時間 | 3,314 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 28 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define overload4(_1, _2, _3, _4, name, ...) name#define rep1(n) for(int i = 0; i < (int)(n); ++i)#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)#define ALL(a) (a).begin(), (a).end()#define Sort(a) (sort((a).begin(), (a).end()))#define RSort(a) (sort((a).rbegin(), (a).rend()))#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))typedef long long int ll;typedef unsigned long long ul;typedef long double ld;typedef vector<int> vi;typedef vector<long long> vll;typedef vector<char> vc;typedef vector<string> vst;typedef vector<double> vd;typedef vector<long double> vld;typedef pair<long long, long long> P;template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }const long long MINF = 0x7fffffffffff;const long long INF = 0x1fffffffffffffff;const long long MOD = 998244353;const long double EPS = 1e-9;const long double PI = acos(-1);template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; returnos; }template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " ";} return os; }template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr<< (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os <<*itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os<< pq.top() << " "; pq.pop(); } return os; }template <typename T>long long binary_search(long long ok, long long ng, T check){while(abs(ok - ng) > 1){long long mid = (ok + ng) / 2;if(check(mid)) ok = mid;else ng = mid;}return ok;}template <typename T>long double binary_search_real(long double ok, long double ng, T check, int iter = 100){for(int i = 0; i < iter; ++i){long double mid = (ok + ng) / 2;if(check(mid)) ok = mid;else ng = mid;}return ok;}template <typename T>long long trisum(T a, T b){long long res = ((b - a + 1) * (a + b)) / 2;return res;}template <typename T>T intpow(T x, int n){T ret = 1;while(n > 0) {if(n & 1) (ret *= x);(x *= x);n >>= 1;}return ret;}template <typename T>T getReminder(T a, T b){if(b == 0) return -1;if(a >= 0 && b > 0){return a % b;} else if(a < 0 && b > 0){return ((a % b) + b) % b;} else if(a >= 0 && b < 0){return a % b;} else{return (abs(b) - abs(a % b)) % b;}}template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }template<class... T> void in(T&... a){ (cin >> ... >> a); }void out(){ cout << '\n'; }template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b;cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }template <typename T>struct fraction{T p, q; // long long or BigIntfraction(T P = 0, T Q = 1) : p(P), q(Q){normalize();}void normalize(){T g = __gcd(p, q);p /= g, q /= g;if(q < 0) p *= -1, q *= -1;}inline bool operator==(const fraction &other) const {return p * other.q == other.p * q;}inline bool operator!=(const fraction &other) const {return p * other.q != other.p * q;}inline bool operator<(const fraction &other) const {return p * other.q < other.p * q;}inline bool operator<=(const fraction &other) const {return p * other.q <= other.p * q;}inline bool operator>(const fraction &other) const {return p * other.q > other.p * q;}inline bool operator>=(const fraction &other) const {return p * other.q >= other.p * q;}inline fraction operator+(const fraction &other) const { return fraction(p * other.q + q * other.p, q * other.q); }inline fraction operator-(const fraction &other) const { return fraction(p * other.q - q * other.p, q * other.q); }inline fraction operator*(const fraction &other) const { return fraction(p * other.p, q * other.q); }inline fraction operator/(const fraction &other) const { return fraction(p * other.q, q * other.p); }inline fraction &operator+=(const fraction &rhs) noexcept {*this = *this + rhs;return *this;}inline fraction &operator-=(const fraction &rhs) noexcept {*this = *this - rhs;return *this;}inline fraction &operator*=(const fraction &rhs) noexcept {*this = *this * rhs;return *this;}inline fraction &operator/=(const fraction &rhs) noexcept {*this = *this / rhs;return *this;}friend inline istream &operator>>(istream &is, fraction &x) noexcept {is >> x.p;x.q = 1;return is;}friend inline ostream &operator<<(ostream &os, const fraction &x) noexcept { return os << x.p << "/" << x.q; }};namespace prime{template <typename T>bool isPrime(T n){switch(n) {case 0: // fall-throughcase 1: return false;case 2: return true;}if(n % 2 == 0) return false;for(T i = 3; i * i <= n; i += 2){if(n % i == 0){return false;}}return true;}template <typename T>vector<pair<T, T>> factorize(T n) {vector<pair<T, T>> ret;for(T i = 2; i * i <= n; i++) {if(n % i != 0) continue;T tmp = 0;while(n % i == 0) {tmp++;n /= i;}ret.push_back(make_pair(i, tmp));}if(n != 1) ret.push_back(make_pair(n, 1));return ret;}template <typename T>vector<T> divisor(T n){T rt = sqrt(n);vector<T> res, resB;for(T i = 1; i * i <= n; i++){if(n % i == 0){res.push_back(i);T j = n / i;if(j != rt){resB.push_back(j);}}}for(int i = (int) resB.size() - 1; i >= 0; i--){res.push_back(resB[i]);}return res;}}ll T;void input(){in(T);}void solve(){ld eps = 0.00001;string a, b; in(a, b);if(a == "1.0000" || b == "0.0000"){out("Yes");return;}ld lda = stold(a), ldb = stold(b);fraction<ll> fa, fb;if(lda < 1){if(b[0] != '-'){out("No");return;}fa = fraction<ll>(10000, lda * 10000);fb = fraction<ll>(-1 * ldb * 10000 + eps, 10000);}else{if(b[0] == '-'){out("No");return;}fa = fraction<ll>(lda * 10000 + eps, 10000);fb = fraction<ll>(ldb * 10000 + eps, 10000);}fa.normalize();fb.normalize();if(fa.q != 1){out("No");return;}for(auto [p, q] : prime::factorize(fa.p)){fraction<ll> g(q, 1);g *= fb;g.normalize();if(g.q != 1){out("No");return;}}out("Yes");}int main(){ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(20);T = 1;// input();while(T--) solve();}