結果
問題 | No.2959 Dolls' Tea Party |
ユーザー |
👑 ![]() |
提出日時 | 2024-11-08 22:27:16 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,712 ms / 3,000 ms |
コード長 | 32,764 bytes |
コンパイル時間 | 3,880 ms |
コンパイル使用メモリ | 247,924 KB |
最終ジャッジ日時 | 2025-02-25 02:52:11 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 33 |
ソースコード
//#define _GLIBCXX_DEBUG// #pragma GCC target("avx2")// #pragma GCC optimize("O3")// #pragma GCC optimize("unroll-loops")#include<bits/stdc++.h>using namespace std;#ifdef LOCAL#include <debug_print.hpp>#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)#else#define OUT(...) (static_cast<void>(0))#endif#define endl '\n'#define lfs cout<<fixed<<setprecision(15)#define ALL(a) (a).begin(),(a).end()#define ALLR(a) (a).rbegin(),(a).rend()#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())#define spa << " " <<#define fi first#define se second#define MP make_pair#define MT make_tuple#define PB push_back#define EB emplace_back#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)namespace template_tute{using ll = long long;using ld = long double;const ll MOD1 = 1e9+7;const ll MOD9 = 998244353;const ll INF = 4.1e18;using P = pair<ll, ll>;template<typename T> using PQ = priority_queue<T>;template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}ll median(ll a,ll b, ll c){return a+b+c-max<ll>({a,b,c})-min<ll>({a,b,c});}void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};template<typename T>void debug(const vector<T>&v){debug(v,v.size());}template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}template<typename T>void rearrange(vector<int>&ord, vector<T>&v){auto tmp = v;for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];}template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){rearrange(ord, head);rearrange(ord, tail...);}template<typename T> vector<int> ascend(const vector<T>&v){vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});return ord;}template<typename T> vector<int> descend(const vector<T>&v){vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});return ord;}template<typename T> vector<T> inv_perm(const vector<T>&ord){vector<T>inv(ord.size());for(int i=0;i<ord.size();i++)inv[ord[i]] = i;return inv;}ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}ll modulo(ll n,ll d){return (n%d+d)%d;};template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());int popcount(ll x){return __builtin_popcountll(x);};int poplow(ll x){return __builtin_ctzll(x);};int pophigh(ll x){return 63 - __builtin_clzll(x);};template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}std::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s) {__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do {--d;*d = "0123456789"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}namespace converter{int dict[500];const string lower="abcdefghijklmnopqrstuvwxyz";const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";const string digit="0123456789";const string digit1="123456789";void regi_str(const string &t){for(int i=0;i<t.size();i++){dict[t[i]]=i;}}void regi_int(const string &t){for(int i=0;i<t.size();i++){dict[i]=t[i];}}vector<int>to_int(const string &s,const string &t){regi_str(t);vector<int>ret(s.size());for(int i=0;i<s.size();i++){ret[i]=dict[s[i]];}return ret;}vector<int>to_int(const string &s){auto t=s;sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());return to_int(s,t);}vector<vector<int>>to_int(const vector<string>&s,const string &t){regi_str(t);vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));for(int i=0;i<s.size();i++){for(int j=0;j<s[0].size();j++){ret[i][j]=dict[s[i][j]];}}return ret;}vector<vector<int>>to_int(const vector<string>&s){string t;for(int i=0;i<s.size();i++){t+=s[i];}sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());return to_int(s,t);}string to_str(const vector<int>&s,const string &t){regi_int(t);string ret;for(auto z:s)ret+=dict[z];return ret;}vector<string> to_str(const vector<vector<int>>&s,const string &t){regi_int(t);vector<string>ret(s.size());for(int i=0;i<s.size();i++){for(auto z:s[i])ret[i]+=dict[z];}return ret;}}template< typename T = int >struct edge {int to;T cost;int id;edge():to(-1),id(-1){};edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}operator int() const { return to; }};template<typename T>using Graph = vector<vector<edge<T>>>;template<typename T>Graph<T>revgraph(const Graph<T> &g){Graph<T>ret(g.size());for(int i=0;i<g.size();i++){for(auto e:g[i]){int to = e.to;e.to = i;ret[to].push_back(e);}}return ret;}template<typename T>Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){Graph<T> ret(n);for(int es = 0; es < m; es++){int u,v;T w=1;cin>>u>>v;u-=indexed,v-=indexed;if(weighted)cin>>w;ret[u].emplace_back(v,w,es);if(!directed)ret[v].emplace_back(u,w,es);}return ret;}template<typename T>Graph<T> readParent(int n,int indexed=1,bool directed=true){Graph<T>ret(n);for(int i=1;i<n;i++){int p;cin>>p;p-=indexed;ret[p].emplace_back(i);if(!directed)ret[i].emplace_back(p);}return ret;}}using namespace template_tute;template< int mod >struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {return ModInt(lhs) += rhs;}friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {return ModInt(lhs) -= rhs;}friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {return ModInt(lhs) *= rhs;}friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {return ModInt(lhs) /= rhs;}bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}pair<int,int>frac(){for(int j=1;j<=300;j++){for(int i=-300;i<=300;i++){if(ModInt(i)/j==*this){return make_pair(i,j);}}}return make_pair(-1,-1);}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt< mod >(t);return (is);}static constexpr int get_mod() { return mod; }};template< typename T >struct Combination {vector< T > _fact, _rfact, _inv;Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {_fact[0] = _rfact[sz] = _inv[0] = 1;for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;_rfact[sz] /= _fact[sz];for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];}inline T fact(ll k) const { return _fact[k]; }inline T rfact(ll k) const { return _rfact[k]; }inline T inv(ll k) const { return _inv[k]; }T P(ll n, ll r) const {if(r < 0 || n < r) return 0;return fact(n) * rfact(n - r);}T C(ll p, ll q) const {if(q < 0 || p < q) return 0;return fact(p) * rfact(q) * rfact(p - q);}T RC(ll p, ll q) const {if(q < 0 || p < q) return 0;return rfact(p) * fact(q) * fact(p - q);}T H(ll n, ll r) const {if(n < 0 || r < 0) return (0);return r == 0 ? 1 : C(n + r - 1, r);}//+1がm個、-1がn個で prefix sumが常にk以上T catalan(ll m,ll n,ll k){if(n>m-k)return 0;else return C(n+m,m)-C(n+m,n+k-1);}};using modint = ModInt< MOD9 >;modint mpow(ll n, ll x){return modint(n).pow(x);}modint mpow(modint n, ll x){return n.pow(x);}//using modint=ld;modint mpow(ll n, ll x){return pow(n,x);}modint mpow(modint n, ll x){return pow(n,x);}using Comb=Combination<modint>;template< typename Mint >struct NumberTheoreticTransformFriendlyModInt {static constexpr uint32_t get_pr() {uint32_t _mod = Mint::get_mod();using u64 = uint64_t;u64 ds[32] = {};int idx = 0;u64 m = _mod - 1;for (u64 i = 2; i * i <= m; ++i) {if (m % i == 0) {ds[idx++] = i;while (m % i == 0) m /= i;}}if (m != 1) ds[idx++] = m;uint32_t _pr = 2;while (1) {int flg = 1;for (int i = 0; i < idx; ++i) {u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;while (b) {if (b & 1) r = r * a % _mod;a = a * a % _mod;b >>= 1;}if (r == 1) {flg = 0;break;}}if (flg == 1) break;++_pr;}return _pr;};static constexpr uint32_t root = get_pr();static vector< Mint > dw, idw;NumberTheoreticTransformFriendlyModInt() = default;static void init() {dw.resize(level);idw.resize(level);setwy(level);}static void fft4(vector<Mint> &a, int k) {if ((int)a.size() <= 1) return;if (k == 1) {Mint a1 = a[1];a[1] = a[0] - a[1];a[0] = a[0] + a1;return;}if (k & 1) {int v = 1 << (k - 1);for (int j = 0; j < v; ++j) {Mint ajv = a[j + v];a[j + v] = a[j] - ajv;a[j] += ajv;}}int u = 1 << (2 + (k & 1));int v = 1 << (k - 2 - (k & 1));Mint one = Mint(1);Mint imag = dw[1];while (v) {// jh = 0{int j0 = 0;int j1 = v;int j2 = j1 + v;int j3 = j2 + v;for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {Mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];Mint t0p2 = t0 + t2, t1p3 = t1 + t3;Mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;}}// jh >= 1Mint ww = one, xx = one * dw[2], wx = one;for (int jh = 4; jh < u;) {ww = xx * xx, wx = ww * xx;int j0 = jh * v;int je = j0 + v;int j2 = je + v;for (; j0 < je; ++j0, ++j2) {Mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx;Mint t0p2 = t0 + t2, t1p3 = t1 + t3;Mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;}xx *= dw[__builtin_ctzll((jh += 4))];}u <<= 2;v >>= 2;}}static void ifft4(vector<Mint> &a, int k) {if ((int)a.size() <= 1) return;if (k == 1) {Mint a1 = a[1];a[1] = a[0] - a[1];a[0] = a[0] + a1;return;}int u = 1 << (k - 2);int v = 1;Mint one = Mint(1);Mint imag = idw[1];while (u) {// jh = 0{int j0 = 0;int j1 = v;int j2 = v + v;int j3 = j2 + v;for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {Mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];Mint t0p1 = t0 + t1, t2p3 = t2 + t3;Mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;}}// jh >= 1Mint ww = one, xx = one * idw[2], yy = one;u <<= 2;for (int jh = 4; jh < u;) {ww = xx * xx, yy = xx * imag;int j0 = jh * v;int je = j0 + v;int j2 = je + v;for (; j0 < je; ++j0, ++j2) {Mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];Mint t0p1 = t0 + t1, t2p3 = t2 + t3;Mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;}xx *= idw[__builtin_ctzll(jh += 4)];}u >>= 4;v <<= 2;}if (k & 1) {u = 1 << (k - 1);for (int j = 0; j < u; ++j) {Mint ajv = a[j] - a[j + u];a[j] += a[j + u];a[j + u] = ajv;}}}static void ntt(vector<Mint> &a) {if ((int)a.size() <= 1) return;fft4(a, __builtin_ctz(a.size()));}static void intt(vector<Mint> &a) {if ((int)a.size() <= 1) return;ifft4(a, __builtin_ctz(a.size()));Mint iv = Mint(a.size()).inverse();for (auto &x : a) x *= iv;}static constexpr int mod = Mint::get_mod();static constexpr int level = __builtin_ctzll(mod - 1);static void setwy(int k) {Mint w[level], y[level];w[k - 1] = Mint(root).pow((mod - 1) / (1 << k));y[k - 1] = w[k - 1].inverse();for (int i = k - 2; i > 0; --i)w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];dw[1] = w[1], idw[1] = y[1], dw[2] = w[2], idw[2] = y[2];for (int i = 3; i < k; ++i) {dw[i] = dw[i - 1] * y[i - 2] * w[i];idw[i] = idw[i - 1] * w[i - 2] * y[i];}}static vector<Mint> multiply(const vector<Mint> &a, const vector<Mint> &b) {int l = a.size() + b.size() - 1;if (min<int>(a.size(), b.size()) <= 40) {vector<Mint> s(l);for (int i = 0; i < (int)a.size(); ++i)for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];return s;}int k = 2, M = 4;while (M < l) M <<= 1, ++k;setwy(k);vector<Mint> s(M);for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];fft4(s, k);if (a.size() == b.size() && a == b) {for (int i = 0; i < M; ++i) s[i] *= s[i];} else {vector<Mint> t(M);for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];fft4(t, k);for (int i = 0; i < M; ++i) s[i] *= t[i];}ifft4(s, k);s.resize(l);Mint invm = Mint(M).inverse();for (int i = 0; i < l; ++i) s[i] *= invm;return s;}static void ntt_doubling(vector<Mint> &a) {int M = (int)a.size();auto b = a;intt(b);Mint r = 1, zeta = Mint(root).pow((Mint::get_mod() - 1) / (M << 1));for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;ntt(b);copy(begin(b), end(b), back_inserter(a));}};template< typename Mint >vector< Mint > NumberTheoreticTransformFriendlyModInt<Mint>::dw = vector< Mint >();template< typename Mint >vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >();//ret[i-j]=x[i]*y[j]template<typename Conv, typename T>vector<T>multiply_minus(vector<T>x,vector<T>y){reverse(y.begin(),y.end());auto tmp = Conv::multiply(x,y);vector<T>ret(x.size());for(int i = 0; i < x.size(); i++){ret[i] = tmp[y.size() - 1 + i];}return ret;}//NumberTheoreticTransformFriendlyModInt<modint>::init();template< typename T >struct FormalPowerSeriesFriendlyNTT : vector< T > {using vector< T >::vector;using P = FormalPowerSeriesFriendlyNTT;using NTT = NumberTheoreticTransformFriendlyModInt< T >;P pre(int deg) const {return P(begin(*this), begin(*this) + min((int) this->size(), deg));}P rev(int deg = -1) const {P ret(*this);if(deg != -1) ret.resize(deg, T(0));reverse(begin(ret), end(ret));return ret;}void ntt(){NTT::ntt(*this);}void intt(){NTT::intt(*this);}void ntt_doubling(){NTT::ntt_doubling(*this);}void shrink() {while(this->size() && this->back() == T(0)) this->pop_back();}P operator+(const P &r) const { return P(*this) += r; }P operator+(const T &v) const { return P(*this) += v; }P operator-(const P &r) const { return P(*this) -= r; }P operator-(const T &v) const { return P(*this) -= v; }P operator*(const P &r) const { return P(*this) *= r; }P operator*(const T &v) const { return P(*this) *= v; }P operator/(const P &r) const { return P(*this) /= r; }P operator%(const P &r) const { return P(*this) %= r; }P &operator+=(const P &r) {if(r.size() > this->size()) this->resize(r.size());for(int i = 0; i < (int) r.size(); i++) (*this)[i] += r[i];return *this;}P &operator-=(const P &r) {if(r.size() > this->size()) this->resize(r.size());for(int i = 0; i < (int) r.size(); i++) (*this)[i] -= r[i];return *this;}// https://judge.yosupo.jp/problem/convolution_modP &operator*=(const P &r) {if(this->empty() || r.empty()) {this->clear();return *this;}auto ret = NTT::multiply(*this, r);return *this = {begin(ret), end(ret)};}P &operator/=(const P &r) {if(this->size() < r.size()) {this->clear();return *this;}int n = this->size() - r.size() + 1;return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);}P &operator%=(const P &r) {*this -= *this / r * r;shrink();return *this;}// https://judge.yosupo.jp/problem/division_of_polynomialspair< P, P > div_mod(const P &r) {P q = *this / r;P x = *this - q * r;x.shrink();return make_pair(q, x);}P operator-() const {P ret(this->size());for(int i = 0; i < (int) this->size(); i++) ret[i] = -(*this)[i];return ret;}P &operator+=(const T &r) {if(this->empty()) this->resize(1);(*this)[0] += r;return *this;}P &operator-=(const T &r) {if(this->empty()) this->resize(1);(*this)[0] -= r;return *this;}P &operator*=(const T &v) {for(int i = 0; i < (int) this->size(); i++) (*this)[i] *= v;return *this;}P dot(P r) const {P ret(min(this->size(), r.size()));for(int i = 0; i < (int) ret.size(); i++) ret[i] = (*this)[i] * r[i];return ret;}P operator>>(int sz) const {if((int) this->size() <= sz) return {};P ret(*this);ret.erase(ret.begin(), ret.begin() + sz);return ret;}P operator<<(int sz) const {P ret(*this);ret.insert(ret.begin(), sz, T(0));return ret;}T operator()(T x) const {T r = 0, w = 1;for(auto &v : *this) {r += w * v;w *= x;}return r;}P diff() const {const int n = (int) this->size();P ret(max(0, n - 1));for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);return ret;}P integral() const {const int n = (int) this->size();P ret(n + 1);ret[0] = T(0);for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);return ret;}// https://judge.yosupo.jp/problem/inv_of_formal_power_series// F(0) must not be 0P inv(int deg = -1) const {assert(((*this)[0]) != T(0));const int n = (int) this->size();if(deg == -1) deg = n;P res(deg);res[0] = {T(1) / (*this)[0]};for(int d = 1; d < deg; d <<= 1) {P f(2 * d), g(2 * d);for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];for(int j = 0; j < d; j++) g[j] = res[j];NTT::ntt(f);NTT::ntt(g);f = f.dot(g);NTT::intt(f);for(int j = 0; j < d; j++) f[j] = 0;NTT::ntt(f);for(int j = 0; j < 2 * d; j++) f[j] *= g[j];NTT::intt(f);for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];}return res;}// https://judge.yosupo.jp/problem/log_of_formal_power_series// F(0) must be 1P log(int deg = -1) const {assert((*this)[0] == T(1));const int n = (int) this->size();if(deg == -1) deg = n;return (this->diff() * this->inv(deg)).pre(deg - 1).integral();}// https://judge.yosupo.jp/problem/sqrt_of_formal_power_seriesP sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {const int n = (int) this->size();if(deg == -1) deg = n;if((*this)[0] == T(0)) {for(int i = 1; i < n; i++) {if((*this)[i] != T(0)) {if(i & 1) return {};if(deg - i / 2 <= 0) break;auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);if(ret.empty()) return {};ret = ret << (i / 2);if((int) ret.size() < deg) ret.resize(deg, T(0));return ret;}}return P(deg, 0);}auto sqr = T(get_sqrt((*this)[0]));if(sqr * sqr != (*this)[0]) return {};P ret{sqr};T inv2 = T(1) / T(2);for(int i = 1; i < deg; i <<= 1) {ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;}return ret.pre(deg);}P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {return sqrt(deg, get_sqrt);}// https://judge.yosupo.jp/problem/exp_of_formal_power_series// F(0) must be 0P exp(int deg = -1) const {if(deg == -1) deg = this->size();assert((*this)[0] == T(0));P inv;inv.reserve(deg + 1);inv.push_back(T(0));inv.push_back(T(1));auto inplace_integral = [&](P &F) -> void {const int n = (int) F.size();auto mod = T::get_mod();while((int) inv.size() <= n) {int i = inv.size();inv.push_back((-inv[mod % i]) * (mod / i));}F.insert(begin(F), T(0));for(int i = 1; i <= n; i++) F[i] *= inv[i];};auto inplace_diff = [](P &F) -> void {if(F.empty()) return;F.erase(begin(F));T coeff = 1, one = 1;for(int i = 0; i < (int) F.size(); i++) {F[i] *= coeff;coeff += one;}};P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};for(int m = 2; m < deg; m *= 2) {auto y = b;y.resize(2 * m);NTT::ntt(y);z1 = z2;P z(m);for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];NTT::intt(z);fill(begin(z), begin(z) + m / 2, T(0));NTT::ntt(z);for(int i = 0; i < m; ++i) z[i] *= -z1[i];NTT::intt(z);c.insert(end(c), begin(z) + m / 2, end(z));z2 = c;z2.resize(2 * m);NTT::ntt(z2);P x(begin(*this), begin(*this) + min< int >(this->size(), m));inplace_diff(x);x.push_back(T(0));NTT::ntt(x);for(int i = 0; i < m; ++i) x[i] *= y[i];NTT::intt(x);x -= b.diff();x.resize(2 * m);for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);NTT::ntt(x);for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];NTT::intt(x);x.pop_back();inplace_integral(x);for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];fill(begin(x), begin(x) + m, T(0));NTT::ntt(x);for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];NTT::intt(x);b.insert(end(b), begin(x) + m, end(x));}return P{begin(b), begin(b) + deg};}// https://judge.yosupo.jp/problem/pow_of_formal_power_seriesP pow(int64_t k, int deg = -1) const {const int n = (int) this->size();if(deg == -1) deg = n;for(int i = 0; i < n; i++) {if((*this)[i] != T(0)) {T rev = T(1) / (*this)[i];P ret = (((*this * rev) >> i).log(deg) * k).exp() * ((*this)[i].pow(k));if(i * k > deg) return P(deg, T(0));ret = (ret << (i * k)).pre(deg);if((int) ret.size() < deg) ret.resize(deg, T(0));return ret;}}return *this;}P mod_pow(int64_t k, P g) const {P modinv = g.rev().inv();auto get_div = [&](P base) {if(base.size() < g.size()) {base.clear();return base;}int n = base.size() - g.size() + 1;return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);};P x(*this), ret{1};while(k > 0) {if(k & 1) {ret *= x;ret -= get_div(ret) * g;ret.shrink();}x *= x;x -= get_div(x) * g;x.shrink();k >>= 1;}return ret;}// https://judge.yosupo.jp/problem/polynomial_taylor_shiftP taylor_shift(T c) const {int n = (int) this->size();vector< T > fact(n), rfact(n);fact[0] = rfact[0] = T(1);for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);rfact[n - 1] = T(1) / fact[n - 1];for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);P p(*this);for(int i = 0; i < n; i++) p[i] *= fact[i];p = p.rev();P bs(n, T(1));for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];p = (p * bs).pre(n);p = p.rev();for(int i = 0; i < n; i++) p[i] *= rfact[i];return p;}void mul(vector<pair<int, T>> g, bool extend = false){if(extend)this->resize(this->size() + g.back().first);int n = this->size();int d = g[0].first;T c = g[0].second;if(d == 0)g.erase(g.begin());else c = 0;for(int i = n - 1; i >= 0; i--){(*this)[i] *= c;for(auto z : g){if(z.first > i)continue;(*this)[i] += (*this)[i-z.first] * z.second;}}}void div(vector<pair<int, T>>g){//定数項は非ゼロint n = this->size();int d = g[0].first;T c = g[0].second;c = T(1) / c;g.erase(g.begin());for(int i = 0; i < n; i++){for(auto z : g){if(z.first > i)continue;(*this)[i] -= (*this)[i-z.first] * z.second;}(*this)[i] *= c;}}template<typename C>P recover(const C &comb){int sz = this->size();P x(sz),y(sz);for(int i = 0; i < sz; i++){x[sz - i - 1] = (*this)[i] * comb.fact(i);y[i] = comb.rfact(i) * (i % 2 == 0 ? 1 : -1);}P tmp(sz);rep(i,0,sz)tmp[i]=comb.rfact(i);auto z = x * y;P ret(z.begin(), z.begin() + sz);reverse(ret.begin(), ret.end());for(int i = 0; i < sz; i++){ret[i] *= comb.rfact(i);}return ret;}};template< typename Mint >using FPS = FormalPowerSeriesFriendlyNTT< Mint >;template<typename Poly>Poly multiply_all(vector<Poly>&fs){queue<Poly>que;for(auto f:fs)que.push(f);while(que.size()>=2){auto p=que.front();que.pop();auto q=que.front();que.pop();que.push(p*q);}return que.front();}// sum f[i]/g[i]template<typename Poly>Poly sum_of_fractions(vector<Poly>&f,vector<Poly>&g,int deg){queue<pair<Poly,Poly>>que;assert(f.size()==g.size());for(int i=0;i<f.size();i++){que.emplace(f[i],g[i]);}while(que.size()>=2){auto p=que.front();que.pop();auto q=que.front();que.pop();que.emplace(p.first*q.second+p.second*q.first,p.second*q.second);}return que.front().first*(que.front().second.inv(deg));}template<typename T>using FormalPowerSeries=FormalPowerSeriesFriendlyNTT<T>;using fps=FormalPowerSeriesFriendlyNTT<modint>;//mainに持っていくこと!void solve(){ll res=0,buf=0;bool judge = true;NumberTheoreticTransformFriendlyModInt<modint>::init();int n,k;cin>>n>>k;vector<int>a(n);rep(i,0,n){cin>>a[i];//a[i]=CEIL(i,100);}modint ret=0;map<int,int>mp;rep(i,0,k){mp[gcd(i,k)]++;}Comb comb(500005);for(auto z:mp){map<int,int>cnt;int d=k/z.first;rep(i,0,n){cnt[min<int>(z.fi,a[i]/d)]++;}//OUT(z.fi,cnt.size());fps g(z.fi+1);for(auto zz:cnt){auto x=min(zz.fi,z.fi);fps f(x+1);rep(i,0,x+1)f[i]=comb.rfact(i);f=f.log(z.fi+1);rep(i,0,f.size()){g[i]+=f[i]*zz.se;}}g=g.exp(z.fi+1);//OUT(z,cnt,g);ret+=g[z.fi]*comb.fact(z.fi)*z.se;}cout<<ret/k<<endl;}int main(){cin.tie(nullptr);ios_base::sync_with_stdio(false);ll res=0,buf=0;bool judge = true;int T = 1;//cin>>T;while(T--){solve();}return 0;}