結果

問題 No.2959 Dolls' Tea Party
ユーザー KumaTachiRenKumaTachiRen
提出日時 2024-11-08 22:34:45
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 918 ms / 3,000 ms
コード長 12,468 bytes
コンパイル時間 7,797 ms
コンパイル使用メモリ 346,204 KB
実行使用メモリ 13,568 KB
最終ジャッジ日時 2024-11-08 22:35:16
合計ジャッジ時間 25,335 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
5,248 KB
testcase_01 AC 4 ms
5,248 KB
testcase_02 AC 4 ms
5,248 KB
testcase_03 AC 4 ms
5,248 KB
testcase_04 AC 4 ms
5,248 KB
testcase_05 AC 4 ms
5,248 KB
testcase_06 AC 44 ms
5,888 KB
testcase_07 AC 48 ms
5,760 KB
testcase_08 AC 45 ms
5,888 KB
testcase_09 AC 857 ms
12,672 KB
testcase_10 AC 887 ms
12,672 KB
testcase_11 AC 867 ms
12,672 KB
testcase_12 AC 872 ms
12,800 KB
testcase_13 AC 881 ms
12,672 KB
testcase_14 AC 47 ms
5,760 KB
testcase_15 AC 47 ms
5,888 KB
testcase_16 AC 890 ms
12,800 KB
testcase_17 AC 867 ms
12,672 KB
testcase_18 AC 865 ms
12,800 KB
testcase_19 AC 888 ms
12,800 KB
testcase_20 AC 868 ms
12,672 KB
testcase_21 AC 918 ms
13,312 KB
testcase_22 AC 898 ms
13,184 KB
testcase_23 AC 900 ms
13,184 KB
testcase_24 AC 4 ms
5,248 KB
testcase_25 AC 4 ms
5,248 KB
testcase_26 AC 4 ms
5,248 KB
testcase_27 AC 10 ms
5,248 KB
testcase_28 AC 9 ms
5,248 KB
testcase_29 AC 23 ms
5,760 KB
testcase_30 AC 22 ms
5,888 KB
testcase_31 AC 24 ms
5,888 KB
testcase_32 AC 828 ms
12,800 KB
testcase_33 AC 872 ms
13,184 KB
testcase_34 AC 870 ms
12,928 KB
testcase_35 AC 867 ms
13,568 KB
testcase_36 AC 812 ms
12,800 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/c++allocator.h:33,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/allocator.h:46,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/string:41,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/locale_classes.h:40,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/ios_base.h:41,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ios:42,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:38,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54,
                 from main.cpp:3:
In member function 'void std::__new_allocator<_Tp>::deallocate(_Tp*, size_type) [with _Tp = atcoder::static_modint<998244353>]',
    inlined from 'constexpr void std::allocator< <template-parameter-1-1> >::deallocate(_Tp*, std::size_t) [with _Tp = atcoder::static_modint<998244353>]' at /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/allocator.h:200:35,
    inlined from 'static constexpr void std::allocator_traits<std::allocator<_CharT> >::deallocate(allocator_type&, pointer, size_type) [with _Tp = atcoder::static_modint<998244353>]' at /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/alloc_traits.h:496:23,
    inlined from 'constexpr void std::_Vector_base<_Tp, _Alloc>::_M_deallocate(pointer, std::size_t) [with _Tp = atcoder::static_modint<998244353>; _Alloc = std:

ソースコード

diff #

#pragma GCC optimize("O3")

#include <bits/stdc++.h>
using namespace std;

#if __has_include(<atcoder/all>)

#include <atcoder/all>
using namespace atcoder;

using mint = modint998244353;
using vm = vector<mint>;
using vvm = vector<vm>;
inline ostream &operator<<(ostream &os, const mint x)
{
    return os << x.val();
};
inline istream &operator>>(istream &is, mint &x)
{
    long long v;
    is >> v;
    x = v;
    return is;
};

#endif

struct Fast
{
    Fast()
    {
        std::cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cout << setprecision(10);
    }
} fast;

#define all(a) (a).begin(), (a).end()
#define contains(a, x) ((a).find(x) != (a).end())
#define rep(i, a, b) for (int i = (a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b) - 1; i >= (a); i--)
#define YN(b) cout << ((b) ? "YES" : "NO") << "\n";
#define Yn(b) cout << ((b) ? "Yes" : "No") << "\n";
#define yn(b) cout << ((b) ? "yes" : "no") << "\n";

template <class T>
inline bool chmin(T &a, T b)
{
    if (a > b)
    {
        a = b;
        return true;
    }
    return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
    if (a < b)
    {
        a = b;
        return true;
    }
    return false;
}

using ll = long long;
using vb = vector<bool>;
using vvb = vector<vb>;
using vi = vector<int>;
using vvi = vector<vi>;
using vl = vector<ll>;
using vvl = vector<vl>;

template <typename T1, typename T2>
ostream &operator<<(ostream &os, pair<T1, T2> &p)
{
    os << "(" << p.first << "," << p.second << ")";
    return os;
}

template <typename T>
ostream &operator<<(ostream &os, vector<T> &vec)
{
    for (int i = 0; i < (int)vec.size(); i++)
    {
        os << vec[i] << (i + 1 == (int)vec.size() ? "" : " ");
    }
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &vec)
{
    for (int i = 0; i < (int)vec.size(); i++)
        is >> vec[i];
    return is;
}

ll floor(ll a, ll b) { return a >= 0 ? a / b : (a + 1) / b - 1; }
ll ceil(ll a, ll b) { return a > 0 ? (a - 1) / b + 1 : a / b; }

template <typename mint>
struct FormalPowerSeries : vector<mint>
{
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;
    FPS &operator+=(const FPS &r)
    {
        if (r.size() > this->size())
            this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++)
            (*this)[i] += r[i];
        return *this;
    }
    FPS &operator+=(const mint &r)
    {
        if (this->empty())
            this->resize(1);
        (*this)[0] += r;
        return *this;
    }
    FPS &operator-=(const FPS &r)
    {
        if (r.size() > this->size())
            this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++)
            (*this)[i] -= r[i];
        return *this;
    }
    FPS &operator-=(const mint &r)
    {
        if (this->empty())
            this->resize(1);
        (*this)[0] -= r;
        return *this;
    }
    FPS &operator*=(const mint &v)
    {
        for (int k = 0; k < (int)this->size(); k++)
            (*this)[k] *= v;
        return *this;
    }
    FPS &operator*=(const FPS &r)
    {
        auto c = atcoder::convolution<mint>((*this), r);
        this->resize(c.size());
        for (int i = 0; i < (int)c.size(); i++)
            (*this)[i] = c[i];
        return *this;
    }
    FPS &operator/=(const FPS &r)
    {
        if (this->size() < r.size())
        {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if ((int)r.size() <= 64)
        {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.at(g.size() - 1).inv();
            for (auto &x : g)
                x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for (int i = deg - 1; i >= 0; i--)
            {
                quo[i] = f[i + gs - 1];
                for (int j = 0; j < gs; j++)
                    f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }
    FPS &operator%=(const FPS &r)
    {
        *this -= *this / r * r;
        shrink();
        return *this;
    }
    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const
    {
        FPS ret(this->size());
        for (int i = 0; i < (int)this->size(); i++)
            ret[i] = -(*this)[i];
        return ret;
    }
    void shrink()
    {
        while (this->size() && this->back() == mint(0))
            this->pop_back();
    }
    FPS rev() const
    {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }
    FPS dot(FPS r) const
    {
        FPS ret(min(this->size(), r.size()));
        for (int i = 0; i < (int)ret.size(); i++)
            ret[i] = (*this)[i] * r[i];
        return ret;
    }
    FPS pre(int sz) const
    {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
    }
    FPS operator>>=(int sz)
    {
        assert(sz >= 0);
        if ((int)this->size() <= sz)
            return {};
        this->erase(this->begin(), this->begin() + sz);
        return *this;
    }
    FPS operator>>(int sz) const
    {
        if ((int)this->size() <= sz)
            return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }
    FPS operator<<=(int sz)
    {
        assert(sz >= 0);
        this->insert(this->begin(), sz, mint(0));
        return *this;
    }
    FPS operator<<(int sz) const
    {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }
    FPS diff() const
    {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        mint one(1), coeff(1);
        for (int i = 1; i < n; i++)
        {
            ret[i - 1] = (*this)[i] * coeff;
            coeff += one;
        }
        return ret;
    }
    FPS integral() const
    {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if (n > 0)
            ret[1] = mint(1);
        auto mod = mint::mod();
        for (int i = 2; i <= n; i++)
            ret[i] = (-ret[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++)
            ret[i + 1] *= (*this)[i];
        return ret;
    }
    mint eval(mint x) const
    {
        mint r = 0, w = 1;
        for (auto &v : *this)
            r += w * v, w *= x;
        return r;
    }
    FPS log(int deg = -1) const
    {
        assert((*this)[0] == mint(1));
        if (deg == -1)
            deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }
    FPS pow(int64_t k, int deg = -1) const
    {
        const int n = (int)this->size();
        if (deg == -1)
            deg = n;
        if (k == 0)
        {
            FPS ret(deg);
            if (deg)
                ret[0] = 1;
            return ret;
        }
        for (int i = 0; i < n; i++)
        {
            if ((*this)[i] != mint(0))
            {
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if ((int)ret.size() < deg)
                    ret.resize(deg, mint(0));
                return ret;
            }
            if (__int128_t(i + 1) * k >= deg)
                return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }
    FPS inv(int deg = -1) const
    {
        assert((*this)[0] != mint(0));
        if (deg == -1)
            deg = (*this).size();
        FPS ret{mint(1) / (*this)[0]};
        for (int i = 1; i < deg; i <<= 1)
            ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1);
        return ret.pre(deg);
    }
    FPS exp(int deg = -1) const
    {
        assert((*this)[0] == mint(0));
        if (deg == -1)
            deg = (*this).size();
        FPS ret{mint(1)};
        for (int i = 1; i < deg; i <<= 1)
            ret = (ret * ((*this).pre(i << 1) - ret.log(i << 1) + 1)).pre(i << 1);
        return ret.pre(deg);
    }
};
using fps = FormalPowerSeries<mint>;

template <typename mint>
struct factorial
{
    vector<mint> f, g, h;
    factorial(int MAX = 0)
    {
        f.resize(1, mint{1});
        g.resize(1, mint{1});
        h.resize(1, mint{1});
        if (MAX > 0)
            extend(MAX + 1);
    }
    void extend(int m = -1)
    {
        int n = f.size();
        if (m == -1)
            m = n * 2;
        if (n >= m)
            return;
        f.resize(m);
        g.resize(m);
        h.resize(m);
        for (int i = n; i < m; i++)
            f[i] = f[i - 1] * mint(i);
        g[m - 1] = f[m - 1].inv();
        h[m - 1] = g[m - 1] * f[m - 2];
        for (int i = m - 2; i >= n; i--)
        {
            g[i] = g[i + 1] * mint(i + 1);
            h[i] = g[i] * f[i - 1];
        }
    }
    mint fact(int i)
    {
        if (i < 0)
            return mint(0);
        while (i >= (int)f.size())
            extend();
        return f[i];
    }
    mint fact_inv(int i)
    {
        if (i < 0)
            return mint(0);
        while (i >= (int)g.size())
            extend();
        return g[i];
    }
    mint inv(int i)
    {
        if (i < 0)
            return -inv(-i);
        while (i >= (int)h.size())
            extend();
        return h[i];
    }
    mint binom(int n, int r)
    {
        if (n < 0 || n < r || r < 0)
            return mint(0);
        return fact(n) * fact_inv(n - r) * fact_inv(r);
    }
    mint multinom(const vector<int> &r)
    {
        int n = 0;
        for (auto &x : r)
        {
            if (x < 0)
                return mint(0);
            n += x;
        }
        mint res = fact(n);
        for (auto &x : r)
            res *= fact_inv(x);
        return res;
    }
    mint binom_naive(int n, int r)
    {
        if (n < 0 || n < r || r < 0)
            return mint(0);
        mint ret = mint(1);
        r = min(r, n - r);
        for (int i = 1; i <= r; ++i)
            ret *= inv(i) * (n--);
        return ret;
    }
    mint P(int n, int r)
    {
        if (n < 0 || n < r || r < 0)
            return mint(0);
        return fact(n) * fact_inv(n - r);
    }
    mint H(int n, int r)
    {
        if (n < 0 || r < 0)
            return mint(0);
        return r == 0 ? 1 : binom(n + r - 1, r);
    }
};

int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }

void solve()
{
    int n, k;
    cin >> n >> k;
    vi a(n);
    rep(i, 0, n) cin >> a[i];
    vi b(k + 1, 0);
    for (auto v : a)
        b[min(v, k)]++;
    vi c(k + 1, 0);
    rep(i, 0, k) c[gcd(i, k)]++;

    factorial<mint> fact(100000);
    map<int, vm> log_memo;

    mint ans = 0;
    for (int w = k; w > 0; w--)
    {
        if (c[w] == 0) continue;
        int d = k / w;
        int s = 0;
        vi cnt(w + 1, 0);
        for (int i = 0; i <= k; i++)
        {
            if (b[i] == 0) continue;
            int m = min(w, i / d);
            s += m * b[i];
            cnt[m] += b[i];
        }
        if (s < w) continue;

        fps f(w + 1, 0);
        for (int i = 1; i <= w; i++)
        {
            if (cnt[i] == 0) continue;
            if (!contains(log_memo, i))
            {
                fps g(i + 1, 0);
                rep(j, 0, i + 1) g[j] = fact.fact_inv(j);
                log_memo[i] = g.log(w + 1);
            }
            {
                auto g = log_memo[i];
                for (int j = 0; j <= w; j++)
                    f[j] += g[j] * cnt[i];
            }
        }
        f = f.exp();
        ans += f[w] * fact.fact(w) * c[w];
    }
    ans *= fact.inv(k);
    cout << ans.val() << "\n";
}

int main()
{
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
}
0