結果
問題 | No.2954 Calculation of Exponentiation |
ユーザー | eQe |
提出日時 | 2024-11-08 22:59:44 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,508 bytes |
コンパイル時間 | 5,172 ms |
コンパイル使用メモリ | 329,124 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-08 22:59:51 |
合計ジャッジ時間 | 6,273 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 1 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 1 ms
5,248 KB |
testcase_30 | AC | 1 ms
5,248 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> namespace my{ using namespace std; #define eb emplace_back #define done(...) return pp(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define ST(...) string __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij--;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; template<class...A>auto range(bool s,A...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;return r;} constexpr char nl=10; constexpr char sp=32; constexpr auto Yes(bool y=1){return y?"Yes":"No";} constexpr auto No(){return Yes(0);} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<sp<<p.b;} }; template<class F=less<>>auto&sort(auto&a,const F&f={}){ranges::sort(a,f);return a;} template<class T,class U>ostream&operator<<(ostream&o,const std::pair<T,U>&p){return o<<p.first<<sp<<p.second;} template<class T,size_t n>ostream&operator<<(ostream&o,const array<T,n>&a){fo(i,n)o<<a[i]<<string(i!=n-1,sp);return o;} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?nl:sp);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} }; void lin(auto&...a){(cin>>...>>a);} template<char c=sp>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<nl;} template<class T,class U=T>auto rle(const vec<T>&a){vec<pair<T,U>>r;fe(a,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;} template<class T,class U=T>auto rce(vec<T>a){return rle<T,U>(sort(a));} ll rand(auto...a){array<ll,2>v{0,0};ll I=0;((v[I++]=a),...);auto[l,r]=v;if(I==1)swap(l,r);static ll t=495;t^=t<<7,t^=t>>9;return l<r?(t%(r-l)+(t%(r-l)<0?r-l:0))+l:t;} struct montgomery64{ using modular=montgomery64; using i64=__int64_t; using u64=__uint64_t; using u128=__uint128_t; static inline u64 N; static inline u64 N_inv; static inline u64 R2; static int set_mod(u64 N){ if(modular::N==N)return 0; assert(N<(1ULL<<63)); assert(N&1); modular::N=N; R2=-u128(N)%N; N_inv=N; fo(5)N_inv*=2-N*N_inv; assert(N*N_inv==1); return 0; } static inline int init=set_mod(998244353); static u64 mod(){return N;} u64 a; montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)N+N)*R2)){} static u64 reduce(const u128&T){ u128 r=(T+u128(u64(T)*-N_inv)*N)>>64; return r>=N?r-N:r; } auto&operator+=(const modular&b){if((a+=b.a)>=N)a-=N;return*this;} auto&operator-=(const modular&b){if(i64(a-=b.a)<0)a+=N;return*this;} auto&operator*=(const modular&b){a=reduce(u128(a)*b.a);return*this;} auto&operator/=(const modular&b){*this*=b.inv();return*this;} friend auto operator+(const modular&a,const modular&b){return modular{a}+=b;} friend auto operator-(const modular&a,const modular&b){return modular{a}-=b;} friend auto operator*(const modular&a,const modular&b){return modular{a}*=b;} friend auto operator/(const modular&a,const modular&b){return modular{a}/=b;} friend bool operator==(const modular&a,const modular&b){return a.a==b.a;} auto operator-()const{return modular{}-modular{*this};} modular pow(u128 n)const{ modular r{1},x{*this}; while(n){ if(n&1)r*=x; x*=x; n>>=1; } return r; } modular inv()const{u64 a=val(),b=N,u=1,v=0;assert(gcd(a,b)==1);while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return u;} u64 val()const{return reduce(a);} friend istream&operator>>(istream&i,montgomery64&b){ll t;i>>t;b=t;return i;} friend ostream&operator<<(ostream&o,const montgomery64&b){return o<<b.val();} }; bool miller_rabin(ll n,vec<ll>as){ ll d=n-1; while(~d&1)d>>=1; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; modular y=modular(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return modular::set_mod(pre_mod),0; } return modular::set_mod(pre_mod),1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin(n,{2,7,61}); return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022}); } ll pollard_rho(ll n){ if(~n&1)return 2; if(is_prime(n))return n; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular R,one=1; auto f=[&](const modular&x){return x*x+R;}; while(1){ modular x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; fo(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return modular::set_mod(pre_mod),g; } } auto factorize(ll n){ assert(n>0); auto f=[](auto&f,ll m){ if(m==1)return vec<ll>{}; ll d=pollard_rho(m); return d==m?vec<ll>{d}:f(f,d)^f(f,m/d); }; return rce(f(f,n)); } single_testcase void solve(){ ST(sa,sb); ll A; if(sb[0]!='-'){ if(sa.substr(sa.size()-4,sa.size())!="0000")done(No()); A=stoll(sa.substr(0,sa.size()-4)); }else{ fo(i,sa.size()-5,sa.size()-1)sa[i]=sa[i+1]; A=stoll(sa.substr(0,sa.size()-1)); if(10000%A)done(No()); A=10000/A; } fo(i,sb.size()-5,sb.size()-1)sb[i]=sb[i+1]; ll B=stoll(sb.substr(0,sb.size()-1)); fe(factorize(A),p,q)if(B*q%10000)done(No()); pp(Yes()); }}