結果
問題 | No.2959 Dolls' Tea Party |
ユーザー | TKTYI |
提出日時 | 2024-11-08 23:30:02 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,169 bytes |
コンパイル時間 | 6,497 ms |
コンパイル使用メモリ | 334,468 KB |
実行使用メモリ | 32,896 KB |
最終ジャッジ日時 | 2024-11-08 23:30:19 |
合計ジャッジ時間 | 13,378 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 314 ms
24,192 KB |
testcase_01 | AC | 286 ms
18,944 KB |
testcase_02 | AC | 288 ms
18,944 KB |
testcase_03 | AC | 288 ms
18,816 KB |
testcase_04 | AC | 314 ms
18,944 KB |
testcase_05 | AC | 286 ms
18,816 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; typedef long long int ll; typedef long double ld; typedef vector<ll> vi; typedef vector<vi> vvi; typedef vector<vvi> vvvi; typedef vector<vvvi> vvvvi; typedef vector<bool> vb; typedef vector<vb> vvb; typedef vector<vvb> vvvb; typedef vector<vvvb> vvvvb; typedef pair<ll,ll> pi; typedef pair<ll,pi> ppi; typedef pair<ll,ppi> pppi; typedef pair<ll,pppi> ppppi; #define FOR(i,l,r) for(ll i=l;i<r;i++) #define REP(i,n) FOR(i,0,n) #define RFOR(i,l,r) for(ll i=r-1;i>=l;i--) #define RREP(i,n) RFOR(i,0,n) #define ALL(x) x.begin(),x.end() #define F first #define S second #define BS(A,x) binary_search(ALL(A),x) #define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin()) #define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin()) #define COU(A,x) (UB(A,x)-LB(A,x)) #define sz(c) ((ll)(c).size()) /* #include<boost/multiprecision/cpp_int.hpp> namespace mp=boost::multiprecision; using Bint=mp::cpp_int; */ template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>; template<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>p){os<<p.F<<" "<<p.S;return os;} template<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;} template<typename T>ostream&operator<<(ostream&os,vector<T>v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?" ":"");return os;} template<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;} template<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;} template<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;} ld dist(ld x1,ld y1,ld x2,ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));} vi fast_mod_convolution(vi&a,vi&b,ll mod){ const ll m1=167772161,m2=469762049,m3=1224736769; const ll m1_inv_m2=inv_mod(m1,m2); const ll m12_inv_m3=inv_mod(m1*m2,m3); const ll m12_mod=m1*m2%mod; auto x=convolution<m1>(a,b); auto y=convolution<m2>(a,b); auto z=convolution<m3>(a,b); vector<ll>ret(sz(a)+sz(b)-1); REP(i,sz(ret)){ ll v1=(y[i]-x[i])*m1_inv_m2%m2;if(v1<0)v1+=m2; ll v2=(z[i]-(x[i]+m1*v1)%m3)*m12_inv_m3%m3;if(v2<0)v2+=m3; ret[i]=(x[i]+m1*v1+m12_mod*v2)%mod; } return ret; } const ld EPS=1e-8; //* using mint=modint998244353; const ll mod=998244353; //*/ /* using mint=modint1000000007; const ll mod=1000000007; //*/ //using mint=modint; //* typedef vector<mint> vm; typedef vector<vm> vvm; typedef vector<vvm> vvvm; typedef vector<vvvm> vvvvm; ostream&operator<<(ostream&os,mint a){os<<a.val();return os;} istream&operator>>(istream&is,mint&a){int x;is>>x;a=mint(x);return is;} //*/ //depend on ACL template<typename T> struct formal_power_series{ private: size_t N; vector<T>F; public: formal_power_series(size_t _N):N(_N){F.assign(N,0);} T&operator[](int i){return F[i];} void operator+=(formal_power_series G){ for(int i=0;i<N&&i<G.F.size();i++)F[i]+=G.F[i]; } void operator-=(formal_power_series G){ for(int i=0;i<N&&i<G.F.size();i++)F[i]-=G.F[i]; } void operator*=(formal_power_series G){ F=convolution(F,G.F); F.resize(N); } void operator*=(T k){ for(int i=0;i<N;i++)F[i]*=k; } void operator/=(formal_power_series G){ F=convolution(F,G.inv().F); F.resize(N); } formal_power_series operator+(formal_power_series G){ formal_power_series res(N); for(int i=0;i<N;i++)res.F[i]=F[i]; res+=G; return res; } formal_power_series operator-(formal_power_series G){ formal_power_series res(N); for(int i=0;i<N;i++)res.F[i]=F[i]; res-=G; return res; } formal_power_series operator*(formal_power_series G){ formal_power_series res(N); for(int i=0;i<N;i++)res.F[i]=F[i]; res*=G; return res; } formal_power_series operator*(T k){ formal_power_series res(N); for(int i=0;i<N;i++)res.F[i]=F[i]; res*=k; return res; } formal_power_series operator/(formal_power_series G){ formal_power_series res(N); for(int i=0;i<N;i++)res.F[i]=F[i]; res*=G.inv(); return res; } formal_power_series pow(long long n){ formal_power_series res(N); formal_power_series A(N); for(int i=0;i<N;i++)A.F[i]=F[i]; res[0]=1; while(n){ if(n&1LL)res*=A; A*=A;n>>=1; } return res; } formal_power_series inv(){ formal_power_series res(N); formal_power_series A(N); for(int i=0;i<N;i++)A.F[i]=-F[i]; res[0]=1; A.F[0]++; int n=N; while(n){ res+=res*A; A*=A; n>>=1; } return res; } formal_power_series dif(){ formal_power_series res(N); for(int i=1;i<N;i++)res[i-1]=F[i]*i; return res; } formal_power_series inte(){ formal_power_series res(N); for(int i=1;i<N;i++)res[i]=F[i-1]/i; return res; } formal_power_series log(){ return (dif()*inv()).inte(); } formal_power_series exp(){ formal_power_series res(N); res[0]=1; int n=N; while(n){ formal_power_series A=*this-res.log(); A[0]++; res*=A; n>>=1; } return res; } }; using FPS=formal_power_series<mint>; int main(){ ll N,K;cin>>N>>K; vi A(N);cin>>A; vi P; { ll p=2,n=K; while(p*p<=n){ if(n%p==0)P.emplace_back(p); while(n%p==0)n/=p; p++; } if(n>1)P.emplace_back(n); } vm ex(2e6,1),re(2e6); FOR(i,2,2e6)ex[i]=ex[i-1]*i; REP(i,2e6)re[i]=1/ex[i]; vector<FPS>F(K+1,FPS(K+1)); REP(i,K+1){ if(i)F[i]=F[i-1]; F[i][i]=re[i]; } REP(i,K+1)F[i]=F[i].log(); mint ans=0; FOR(d,1,K+1)if(K%d==0){ vi C(d+1); REP(i,N)C[min(d,A[i]/(K/d))]++; FPS G(d+1); FOR(i,1,d+1)if(C[i]){ REP(j,d+1)G[j]+=C[i]*F[i][j]; } G=G.exp(); ll phi=K/d; for(auto p:P)if(K/d%p==0)phi-=phi/p; ans+=phi*G[d]*ex[d]; } ans/=K; cout<<ans<<endl; return 0; }