結果
問題 | No.2959 Dolls' Tea Party |
ユーザー | leaf_1415 |
提出日時 | 2024-11-08 23:50:56 |
言語 | C++11 (gcc 11.4.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 14,294 bytes |
コンパイル時間 | 2,504 ms |
コンパイル使用メモリ | 130,376 KB |
実行使用メモリ | 11,648 KB |
最終ジャッジ日時 | 2024-11-08 23:51:03 |
合計ジャッジ時間 | 7,644 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
10,624 KB |
testcase_01 | AC | 4 ms
5,248 KB |
testcase_02 | AC | 4 ms
5,248 KB |
testcase_03 | AC | 5 ms
5,248 KB |
testcase_04 | AC | 4 ms
5,248 KB |
testcase_05 | AC | 4 ms
5,248 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
#include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #include <array> #include <unordered_set> #include <unordered_map> #define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--) #define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++) #define pers(x, s) for(ll x = (ll)(s).size()-1; (x) >= 0; (x)--) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define pb push_back #define fi first #define se second #define inf 2e18 #define eps 1e-9 const double PI = 3.1415926535897932384626433; using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll> P; template<class T> using Preq = priority_queue<T>; template<class T> using preq = priority_queue<T, vector<T>, greater<T>>; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; const int dx8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy8[] = {0, -1, -1, -1, 0, 1, 1, 1}; const int mod = 998244353; //const int mod = 1000000007; struct mint{ int x; mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){x += ope.x; if(x >= mod) x -= mod; return *this;} mint& operator-=(const mint &ope){x += mod - ope.x; if(x >= mod) x -= mod; return *this;} mint& operator*=(const mint &ope){ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this;} mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){if(n & 1) *this *= mul; mul *= mul; n >>= 1;} return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} bool operator <(const mint &ope)const{return x < ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope = mint(t); return is;} ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} ll modpow(ll a, ll n, ll mod){ if(n == 0) return 1; if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod; else return modpow((a*a)%mod, n/2, mod) % mod; } vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(int n, int k){ return comb(n, k) * fact[k]; } mint divide(int n, int k){ if(n == 0 && k == 0) return 1; return comb(n+k-1, k-1); } template<typename T> T comb2(ll n, ll k){ if(n < 0 || k < 0 || n < k) return T(0); T ret = 1; rep(i, 1, k) ret *= n-k+i, ret /= i; return ret;} mint cat(ll w, ll h, ll b = 0){ return comb(w+h, w) - comb(w+h, h+b+1); } //b >= 0; vector<ll> prime, pvec, qrime; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i] == 0) pvec.push_back(i), prime[i] = i; for(auto p : pvec){ if(i*p > n || p > prime[i]) break; prime[i*p] = p;} } } void make_qrime(int n){ qrime.resize(n+1); rep(i, 2, n){int ni = i / prime[i]; if(prime[i] == prime[ni]) qrime[i] = qrime[ni] * prime[i]; else qrime[i] = prime[i];} } void factorize(ll n, map<ll, ll> &mp){ mp.clear(); for(auto p : pvec) while(n % p == 0) mp[p]++, n /= p; if(n > 1) mp[n]++; } template<typename S, typename T, typename U> bool isin(S x, T l, U r){return l <= x && x <= r;} template<typename T> bool isdigit(T c){return isin(c, '0', '9');} template<typename T> bool islower(T c){return isin(c, 'a', 'z');} template<typename T> bool isupper(T c){return isin(c, 'A', 'Z');} bool exceed(ll x, ll y, ll m){return y > 0 && x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "Yes" << endl; } void no(){ cout << "No" << endl; } ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); } ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); } ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;} ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} template<typename T> T arith(T x){return x*(x+1)/2;} template<typename T> T arith2(T x){return x*(x+1)*(x*2+1)/6;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x, ll b = 10){if(x == 0) return "0"; string ret; for(;x;x/=b) ret += x % b + '0'; reverse(all(ret)); return ret;} ll stoll(string &s, ll b = 10){ll ret = 0; for(auto c : s) ret *= b, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());} int popcount(ull x){ x -= ((x>>1)&0x5555555555555555ULL), x = (x & 0x3333333333333333ULL) + ((x>>2) & 0x3333333333333333ULL); return (((x + (x>>4)) & 0x0F0F0F0F0F0F0F0FULL) * 0x0101010101010101ULL) >> 56; } template<typename T> vector<pair<T, ll>> rle(vector<T> vec){ vector<pair<T, ll>> ret; for(auto x : vec){if(sz(ret) == 0 || ret.back().first != x) ret.push_back(P(x, 1)); else ret.back().second++;} return ret; } vector<pair<char, ll>> rle(string s){ vector<char> vec; for(auto c : s) vec.push_back(c); return rle(vec);} template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;} template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;} template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);} template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);} template<class T> T dot(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.first + s.second*t.second;} template<class T> T cross(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.second - s.second*t.first;} template<class T> T mdist(pair<T, T> s, pair<T, T> t){return abs(s.first-t.first) + abs(s.second-t.second);} template<class T> T cdist(pair<T, T> s, pair<T, T> t){return max(abs(s.first-t.first), abs(s.second-t.second));} template<class T> T edist2(pair<T, T> s, pair<T, T> t){return (s.first-t.first)*(s.first-t.first) + (s.second-t.second)*(s.second-t.second);} template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, list<T>& ls){for(auto x : ls) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, const list<T>& ls){for(auto x : ls) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i, deq) os << deq[i] << " "; return os;} template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;} template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;} template<typename T> void outg(T a[], ll sy, ll ty, ll sx, ll tx){rep(y, sy, ty){rep(x, sx, tx){cout << a[x][y]; if(x < tx) cout << " ";} cout << endl;}} template<typename T, size_t N> ostream& operator << (ostream& os, array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;} template<typename T, size_t N> ostream& operator << (ostream& os, const array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;} void dump_func(){cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail){cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...);} template<typename T> void bssert(bool b, T t){ if(!b) cout << t << endl, exit(0); } struct NTT_Convolution{ NTT_Convolution(){}; static int rev(int x, int n){ int ret = 0; for(int i = 0; i < n; i++) ret <<= 1, ret |= (x>>i) & 1; return ret; } static void DFT(vector<mint> &f, vector<mint> &F, int n, mint root, bool inv = false) { int N = 1<<n; F.resize(N); for(int i = 0; i < N; i++) F[rev(i, n)] = f[i]; if(inv) root = root.inverse(); mint a, b, x, z; for(int i = 0; i < n; i++){ int l = 1<<i; z = modpow(root, 1<<(n-(i+1))); for(int j = 0; j < N; j+=l*2){ x = 1; for(int k = j; k < j+l; k++){ a = F[k], b = F[k+l] * x; F[k] = a + b, F[k+l] = a - b, x *= z; } } } if(inv){ mint Ninv = mint(N).inverse(); for(int i = 0; i < N; i++) F[i] *= Ninv; } } static void conv(vector<mint> f, vector<mint> g, vector<mint> &dest) { ll logf = 0, logg = 0, len = f.size() + g.size(); for(int i = f.size(); i; i /= 2) logf++; for(int i = g.size(); i; i /= 2) logg++; ll n = max(logf, logg)+1, N = 1<<n; f.resize(N), g.resize(N); mint root = modpow(mint(3), 119 * (1<<23-n)); vector<mint> F, G; DFT(f, F, n, root), DFT(g, G, n, root); for(int i = 0; i < N; i++) F[i] *= G[i]; DFT(F, f, n, root, true); f.resize(len-1); dest = f; } }; struct FPS{ static void inverse(vector<mint> f, int n, vector<mint> &dest) { int logn = digitnum(n, 2); while(f.size() < (1<<logn)) f.push_back(mint(0)); vector<mint> fvec, gvec, Fvec, Gvec; fvec.push_back(f[0]), gvec.push_back(f[0].inverse()); for(int i = 1; i <= logn; i++){ int l = 1<<i; mint root = modpow(mint(3), 119 * (1<<23-(i+1))); while(fvec.size() < l) fvec.push_back(f[fvec.size()]); fvec.resize(l*2); NTT_Convolution::DFT(fvec, Fvec, i+1, root); gvec.resize(l*2); NTT_Convolution::DFT(gvec, Gvec, i+1, root); for(int j = 0; j < l*2; j++) Gvec[j] = Gvec[j]*(mint(2) - Fvec[j]*Gvec[j]); NTT_Convolution::DFT(Gvec, gvec, i+1, root, true); fvec.resize(l), gvec.resize(l); } dest = gvec; } static void derivative(vector<mint> f, vector<mint> &dest) { dest.resize(f.size()-1); if(dest.size() == 0){ dest.push_back(mint(0)); return; } for(int i = 0; i < dest.size(); i++) dest[i] = f[i+1] * mint(i+1); } static void integral(vector<mint> f, vector<mint> &dest) { dest.resize(f.size()+1); dest[0] = mint(0); for(int i = 0; i < f.size(); i++) dest[i+1] = f[i] / mint(i+1); } static void log(vector<mint> f, int n, vector<mint> &dest) //required: f[0] == 1 { vector<mint> df; FPS::derivative(f, df), FPS::inverse(f, n, f); NTT_Convolution::conv(df, f, f); FPS::integral(f, dest); dest.resize(n); } static void exp(vector<mint> f, int n, vector<mint> &dest) //required: f[0] == 0 { int logn = digitnum(n, 2); while(f.size() < (1<<logn)) f.push_back(mint(0)); vector<mint> fvec, gvec, ngvec; fvec.push_back(f[0]), gvec.push_back(mint(1)); for(int i = 1; i <= logn; i++){ while(fvec.size() < (1<<i)) fvec.push_back(f[fvec.size()]); log(gvec, (1<<i), ngvec), ngvec.resize(1<<i); for(int j = 0; j < (1<<i); j++) ngvec[j] = fvec[j] - ngvec[j]; ngvec[0] += mint(1); NTT_Convolution::conv(gvec, ngvec, ngvec); ngvec.resize(1<<i); swap(gvec, ngvec); } dest = gvec, dest.resize(n); } static void pow(vector<mint> f, ll e, int n, vector<mint> &dest) { if(e == 0){ dest.clear(), dest.resize(n), dest[0] = 1; return; } int p = -1; for(int i = 0; i < f.size(); i++){ if(f[i] != mint(0)){ p = i; break; } } if(p == -1 || (p > 0 && e >= ceil(n, p))){ dest.clear(), dest.resize(n); return; } mint c = f[p], cinv = c.inverse(); f.erase(f.begin(), f.begin() + p); for(auto & x : f) x *= cinv; log(f, n-p*e, f); for(auto &x : f) x *= mint(e); exp(f, n-p*e, f); c = modpow(c, e); for(auto &x : f) x *= c; dest.clear(), dest.resize(p*e); dest.insert(dest.end(), f.begin(), f.end()); } }; ll n, k; ll a[300005]; ll c[1505]; mint inv[1505]; map<ll, mint> mp; void calc(ll g) { ll h = k/g; rep(i, 0, k) c[i] = 0; rep(i, 1, n){ ll x = min(g, a[i]/h); c[x]++; } vector<mint> vec(g+1); rep(i, 0, g){ vector<mint> tmp(g+1); rep(j, 0, i) tmp[j] = fact_inv[j]; FPS::log(tmp, g, tmp); rep(j, 0, g) vec[j] += tmp[j] * c[i]; } FPS::exp(vec, g, vec); mp[g] = vec[g] * fact[g]; } int main(void) { ios::sync_with_stdio(0); cin.tie(0); make_fact(100005); rep(i, 1, 1502) inv[i] = mint(i).inverse(); cin >> n >> k; rep(i, 1, n) cin >> a[i]; mint ans = 0; rep(i, 1, k){ ll g = gcd(k, i); if(mp.count(g) == 0) calc(g); ans += mp[g]; } ans /= k; outl(ans); return 0; }