結果
問題 | No.2959 Dolls' Tea Party |
ユーザー | vwxyz |
提出日時 | 2024-11-08 23:53:55 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 13,890 bytes |
コンパイル時間 | 5,099 ms |
コンパイル使用メモリ | 308,284 KB |
実行使用メモリ | 20,096 KB |
最終ジャッジ日時 | 2024-11-08 23:54:11 |
合計ジャッジ時間 | 15,141 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
20,096 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1,618 ms
8,064 KB |
testcase_07 | AC | 1,718 ms
8,384 KB |
testcase_08 | AC | 1,684 ms
8,108 KB |
testcase_09 | TLE | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
#include <bits/stdc++.h> #include <vector> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; const int MOD = 998244353; template<class T> using V = vector<T>; template<class T> using VV = V<V<T>>; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); } #define FOR(i, a, b) for(int i=(int)(a);i<(int)(b);i++) #define rep(i,N) for(int i=0;i<(int)(N);i++) #define rep1(i,N) for(int i=1;i<=(int)(N);i++) #define fs first #define sc second #define eb emplace_back #define pb eb #define all(x) x.begin(),x.end() template<class T, class U> void chmin(T& t, const U& u) { if (t > u) t = u; } template<class T, class U> void chmax(T& t, const U& u) { if (t < u) t = u; } #ifdef LOCAL #define show(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl #else #define show(x) true #endif template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { return os << "P(" << p.first << ", " << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const V<T>& v) { os << "["; for (auto d : v) os << d << ", "; return os << "]"; } // cin.tie(nullptr); // ios::sync_with_stdio(false); // cout << fixed << setprecision(20); template <uint MD> struct ModInt { using M = ModInt; const static M G; uint v; ModInt(ll _v = 0) { set_v(_v % MD + MD); } M& set_v(uint _v) { v = (_v < MD) ? _v : _v - MD; return *this; } explicit operator bool() const { return v != 0; } M operator-() const { return M() - *this; } M operator+(const M& r) const { return M().set_v(v + r.v); } M operator-(const M& r) const { return M().set_v(v + MD - r.v); } M operator*(const M& r) const { return M().set_v(ull(v) * r.v % MD); } M operator/(const M& r) const { return *this * r.inv(); } M& operator+=(const M& r) { return *this = *this + r; } M& operator-=(const M& r) { return *this = *this - r; } M& operator*=(const M& r) { return *this = *this * r; } M& operator/=(const M& r) { return *this = *this / r; } bool operator==(const M& r) const { return v == r.v; } M pow(ll n) const { M x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } M inv() const { return pow(MD - 2); } friend ostream& operator<<(ostream& os, const M& r) { return os << r.v;} }; template<> const ModInt<998244353> ModInt<998244353>::G = 3; // 適切な原始根を指定します using Mint = ModInt<998244353>; ll modpow(ll base, ll exp, ll mod) { ll res = 1; while (exp > 0) { if (exp % 2 == 1) res = res * base % mod; base = base * base % mod; exp /= 2; } return res; } //x^2=N(mod p)となるxを返す(存在しないなら-1) //modpow(a,b,p)はa^b(mod p) ll Tonelli_Shanks(ll N, ll p) { N%=p; if(p==2){ return N; } if (modpow(N, p >> 1, p) == p - 1) { return -1; } else if (p % 4 == 3) { return modpow(N, (p + 1) / 4, p); } else { ll n = 1; for (; n < p; n++) { if (modpow(n, p >> 1, p) == p - 1) { break; } } ll pp = p - 1; int c = 0; while (pp % 2 == 0) { pp /= 2; c++; } ll s = modpow(N, pp, p); ll r = modpow(N, (pp + 1) / 2, p); for (int i = c - 2; i >= 0; --i) { if (modpow(s, 1LL << i, p) == p - 1) { s = s * modpow(n, p >> (1 + i), p) % p; r = r * modpow(n, p >> (2 + i), p) % p; } } return r; } } void nft(bool type, V<Mint>& a) { int n = int(a.size()), s = 0; while ((1 << s) < n) s++; assert(1 << s == n); static V<Mint> ep, iep; while (int(ep.size()) <= s) { ep.push_back(Mint::G.pow(Mint(-1).v / (1 << ep.size()))); iep.push_back(ep.back().inv()); } V<Mint> b(n); for (int i = 1; i <= s; i++) { int w = 1 << (s - i); Mint base = type ? iep[i] : ep[i], now = 1; for (int y = 0; y < n / 2; y += w) { for (int x = 0; x < w; x++) { auto l = a[y << 1 | x]; auto r = now * a[y << 1 | x | w]; b[y | x] = l + r; b[y | x | n >> 1] = l - r; } now *= base; } swap(a, b); } } template <class Mint> V<Mint> multiply(const V<Mint>& a, const V<Mint>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (min(n, m) <= 8) { V<Mint> ans(n + m - 1); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ans[i + j] += a[i] * b[j]; return ans; } int lg = 0; while ((1 << lg) < n + m - 1) lg++; int z = 1 << lg; auto a2 = a, b2 = b; a2.resize(z); b2.resize(z); nft(false, a2); nft(false, b2); for (int i = 0; i < z; i++) a2[i] *= b2[i]; nft(true, a2); a2.resize(n + m - 1); Mint iz = Mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a2[i] *= iz; return a2; } template <class D> struct Poly { vector<D> v; Poly(const vector<D>& _v = {}) : v(_v) { shrink(); } void shrink() { while (v.size() && !v.back()) v.pop_back(); } int size() const { return int(v.size()); } D freq(int p) const { return (p < size()) ? v[p] : D(0); } Poly operator+(const Poly& r) const { auto n = max(size(), r.size()); vector<D> res(n); for (int i = 0; i < n; i++) res[i] = freq(i) + r.freq(i); return res; } Poly operator-(const Poly& r) const { int n = max(size(), r.size()); vector<D> res(n); for (int i = 0; i < n; i++) res[i] = freq(i) - r.freq(i); return res; } Poly operator*(const Poly& r) const { return {multiply(v, r.v)}; } Poly operator*(const D& r) const { int n = size(); vector<D> res(n); for (int i = 0; i < n; i++) res[i] = v[i] * r; return res; } Poly operator/(const D &r) const{ return *this * r.inv(); } Poly operator/(const Poly& r) const { if (size() < r.size()) return {{}}; int n = size() - r.size() + 1; return (rev().pre(n) * r.rev().inv(n)).rev(n); //変更 } Poly operator%(const Poly& r) const { return *this - *this / r * r; } Poly operator<<(int s) const { vector<D> res(size() + s); for (int i = 0; i < size(); i++) res[i + s] = v[i]; return res; } Poly operator>>(int s) const { if (size() <= s) return Poly(); vector<D> res(size() - s); for (int i = 0; i < size() - s; i++) res[i] = v[i + s]; return res; } Poly& operator+=(const Poly& r) { return *this = *this + r; } Poly& operator-=(const Poly& r) { return *this = *this - r; } Poly& operator*=(const Poly& r) { return *this = *this * r; } Poly& operator*=(const D& r) { return *this = *this * r; } Poly& operator/=(const Poly& r) { return *this = *this / r; } Poly& operator/=(const D &r) {return *this = *this/r;} Poly& operator%=(const Poly& r) { return *this = *this % r; } Poly& operator<<=(const size_t& n) { return *this = *this << n; } Poly& operator>>=(const size_t& n) { return *this = *this >> n; } Poly pre(int le) const { return {{v.begin(), v.begin() + min(size(), le)}}; } Poly rev(int n = -1) const { vector<D> res = v; if (n != -1) res.resize(n); reverse(res.begin(), res.end()); return res; } Poly diff() const { vector<D> res(max(0, size() - 1)); for (int i = 1; i < size(); i++) res[i - 1] = freq(i) * i; return res; } Poly inte() const { vector<D> res(size() + 1); for (int i = 0; i < size(); i++) res[i + 1] = freq(i) / (i + 1); return res; } // f * f.inv() = 1 + g(x)x^m Poly inv(int m) const { Poly res = Poly({D(1) / freq(0)}); for (int i = 1; i < m; i *= 2) { res = (res * D(2) - res * res * pre(2 * i)).pre(2 * i); } return res.pre(m); } Poly exp(int n) const { assert(freq(0) == 0); Poly f({1}), g({1}); for (int i = 1; i < n; i *= 2) { g = (g * 2 - f * g * g).pre(i); Poly q = diff().pre(i - 1); Poly w = (q + g * (f.diff() - f * q)).pre(2 * i - 1); f = (f + f * (*this - w.inte()).pre(2 * i)).pre(2 * i); } return f.pre(n); } Poly log(int n) const { assert(freq(0) == 1); auto f = pre(n); return (f.diff() * f.inv(n - 1)).pre(n - 1).inte(); } Poly sqrt(int n) const { assert(freq(0) == 1); Poly f = pre(n + 1); Poly g({1}); for (int i = 1; i < n; i *= 2) { g = (g + f.pre(2 * i) * g.inv(2 * i)) / 2; } return g.pre(n + 1); } //定数項が1である必要はない pair<bool,Poly> sqrt_arb(int n) const{ if(size()==0){ return {true,Poly()}; } int c=0; while(c*2<size() && !freq(c*2)){ if(freq(c*2+1)){ return {false,Poly()}; } c+=1; } //modが変わったら修正する Mint x=Tonelli_Shanks((ll)freq(c*2).v,998244353ll); if(x==-1){ return {false,Poly()}; } if(n<=c){ return {true,Poly()}; } Poly P=(*this)>>c*2; P/=x*x; P=P.sqrt(n-c); P<<=c; P*=x; return {true,P}; } // Poly power(ll k,int n){ if(!k){ return Poly({D(1)}); } if(!size()){ return Poly(); } int c=0; while(c<size()&&!freq(c)){ c+=1; } if(c>(n-1)/k){ return Poly(); } Mint ic=freq(c),pc=freq(c); ic=ic.inv(); pc=pc.pow(k); int l=n-c*k; return (((((*this).pre(l+c)*ic>>c).log(l)*k).exp(l)*pc)<<c*k).pre(n); } //N項目までなら%modを.pre(N)に書き換えた方が速い(けど遅い) Poly pow_mod(ll n, const Poly& mod) { Poly x = *this, r = {{1}}; while (n) { if (n & 1) r = r * x % mod; x = x * x % mod; n >>= 1; } return r; } friend ostream& operator<<(ostream& os, const Poly& p) { if (p.size() == 0) return os << "0"; for (auto i = 0; i < p.size(); i++) { if (p.v[i]) { os << p.v[i] << "x^" << i; if (i != p.size() - 1) os << "+"; } } return os; } }; template <class Mint> struct MultiEval { using NP = MultiEval*; NP l, r; vector<Mint> que; int sz; Poly<Mint> mul; MultiEval(const vector<Mint>& _que, int off, int _sz) : sz(_sz) { if (sz <= 100) { que = {_que.begin() + off, _que.begin() + off + sz}; mul = {{1}}; for (auto x : que) mul *= {{-x, 1}}; return; } l = new MultiEval(_que, off, sz / 2); r = new MultiEval(_que, off + sz / 2, sz - sz / 2); mul = l->mul * r->mul; } MultiEval(const vector<Mint>& _que) : MultiEval(_que, 0, int(_que.size())) {} void query(const Poly<Mint>& _pol, vector<Mint>& res) const { if (sz <= 100) { for (auto x : que) { Mint sm = 0, base = 1; for (int i = 0; i < _pol.size(); i++) { sm += base * _pol.freq(i); base *= x; } res.push_back(sm); } return; } auto pol = _pol % mul; l->query(pol, res); r->query(pol, res); } vector<Mint> query(const Poly<Mint>& pol) const { vector<Mint> res; query(pol, res); return res; } }; //rev()を取って-1倍すると、1+...の形で線形漸化式の分母になる template <class Mint> Poly<Mint> berlekamp_massey(const vector<Mint>& s) { int n = int(s.size()); vector<Mint> b = {Mint(-1)}, c = {Mint(-1)}; Mint y = Mint(1); for (int ed = 1; ed <= n; ed++) { int l = int(c.size()), m = int(b.size()); Mint x = 0; for (int i = 0; i < l; i++) { x += c[i] * s[ed - l + i]; } b.push_back(0); m++; if (!x) continue; Mint freq = x / y; if (l < m) { // use b auto tmp = c; c.insert(begin(c), m - l, Mint(0)); for (int i = 0; i < m; i++) { c[m - 1 - i] -= freq * b[m - 1 - i]; } b = tmp; y = x; } else { // use c for (int i = 0; i < m; i++) { c[l - 1 - i] -= freq * b[m - 1 - i]; } } } return c; } // n/dのx^Nの係数 template <class D> D Bostan_Mori(Poly<D> n, Poly<D> d, ll N) { while (N) { Poly<D> dd=Poly(d.v); for(int i=1;i<dd.size();i+=2){ dd.v[i]=-dd.v[i]; } n*=dd; if(N%2) n>>=1; for(int i=0;i<n.size();i+=2){ n.v[i/2]=n.v[i]; } n=n.pre((n.size()+1)/2); d*=dd; for(int i=0;i<d.size();i+=2){ d.v[i/2]=d.v[i]; } d=d.pre((d.size()+1)/2); N>>=1; } return n.size() ? n.freq(0) : D(0); } template<class D> D BMBM(vector<D> A,ll N){ Poly<D> d=berlekamp_massey(A).rev()*(-1); Poly<D> n=(d*Poly(A)).pre(d.size()-1); return Bostan_Mori(n,d,N); } int K; vector<Mint> fact, fact_inve; // メモ化ログ関数 unordered_map<int, Poly<Mint>> memo_log; Poly<Mint> memoized_log(const int C) { if (memo_log.count(C)) return memo_log[C]; vector<Mint> v(K+1,0); for (int x = 0; x <= K; ++x) { if (x <= C) v[x] = fact_inve[x]; } Poly<Mint> poly(v); return memo_log[C] = poly.log(K+1); } // solve関数 Mint solve(int C, vector<int> A, int N) { vector<ll> dp(C + 1, 0); dp[0] = 1; int S = K / C; vector<int> cnt(C + 2, 0); for (int i = 0; i < N; ++i) { A[i] /= S; A[i] = min(A[i], C); if (A[i]) cnt[A[i]]++; } vector<Mint> poly_log(C + 1, 0); for (int c = 1; c <= C; ++c) { if (cnt[c]) { Poly<Mint> log_poly = memoized_log(min(C,c)); for (int x = 0; x <= C; ++x) { poly_log[x] = (poly_log[x] + log_poly.freq(x) * cnt[c]); } } } Poly<Mint> poly(poly_log); poly=poly.exp(C+1); return poly.freq(C) * fact[C]; } int main() { int N; cin >> N >> K; vector<int> A(N); for(int i=0;i<N;i++){ cin>>A[i]; } fact.resize(N + K + 1, 1); fact_inve.resize(N + K + 1); for (int i = 1; i <= N + K; ++i) { fact[i] = fact[i - 1] * Mint(i); } for (int i = 0; i <= N + K; ++i) { fact_inve[i] = Mint(1)/fact[i]; } Mint ans = 0; for (int d = 0; d < K; ++d) { ans = ans + solve(gcd(K, d), A, N); } ans = ans * modpow(K, MOD - 2, MOD); cout << ans << endl; return 0; }