結果
問題 | No.2616 中央番目の中央値 |
ユーザー | vjudge1 |
提出日時 | 2024-11-12 00:54:37 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 58 ms / 2,000 ms |
コード長 | 16,545 bytes |
コンパイル時間 | 3,965 ms |
コンパイル使用メモリ | 266,280 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-11-12 00:54:45 |
合計ジャッジ時間 | 7,288 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 5 ms
5,248 KB |
testcase_17 | AC | 6 ms
5,248 KB |
testcase_18 | AC | 9 ms
5,248 KB |
testcase_19 | AC | 18 ms
5,632 KB |
testcase_20 | AC | 18 ms
5,504 KB |
testcase_21 | AC | 38 ms
7,936 KB |
testcase_22 | AC | 57 ms
10,240 KB |
testcase_23 | AC | 57 ms
10,240 KB |
testcase_24 | AC | 46 ms
10,240 KB |
testcase_25 | AC | 47 ms
10,240 KB |
testcase_26 | AC | 58 ms
10,240 KB |
testcase_27 | AC | 56 ms
10,112 KB |
testcase_28 | AC | 57 ms
10,240 KB |
testcase_29 | AC | 57 ms
10,240 KB |
testcase_30 | AC | 57 ms
10,240 KB |
testcase_31 | AC | 57 ms
10,112 KB |
testcase_32 | AC | 55 ms
10,240 KB |
testcase_33 | AC | 55 ms
10,112 KB |
testcase_34 | AC | 55 ms
10,240 KB |
testcase_35 | AC | 56 ms
10,240 KB |
testcase_36 | AC | 56 ms
10,240 KB |
ソースコード
#pragma GCC optimize("O3,unroll-loops") // #pragma GCC target("avx,popcnt,sse4,abm") #include<bits/stdc++.h> using namespace std; #define ZTMYACANESOCUTE ios_base::sync_with_stdio(0), cin.tie(0) #define ll long long #define ull unsigned long long #define pb push_back #define all(a) (a).begin(), (a).end() #define debug(x) cerr << #x << " = " << x << '\n'; #define rep(X, a, b) for(int X = a; X < b; ++X) #define pii pair<int, int> #define pll pair<ll, ll> #define pld pair<ld, ld> #define ld long double #define F first #define S second pii operator + (const pii &p1, const pii &p2) { return make_pair(p1.F + p2.F, p1.S + p2.S); } pii operator - (const pii &p1, const pii &p2) { return make_pair(p1.F - p2.F, p1.S - p2.S); } pll operator + (const pll &p1, const pll &p2) { return make_pair(p1.F + p2.F, p1.S + p2.S); } pll operator - (const pll &p1, const pll &p2) { return make_pair(p1.F - p2.F, p1.S - p2.S); } template<class T> bool chmin(T &a, T b) { return (b < a && (a = b, true)); } template<class T> bool chmax(T &a, T b) { return (a < b && (a = b, true)); } #define lpos pos << 1 #define rpos pos << 1 | 1 template<typename A, typename B> ostream& operator<<(ostream &os, const pair<A, B> &p) { return os << '(' << p.first << "," << p.second << ')'; } template<typename A> ostream& operator << (ostream &os, const vector<A> &p) { for(const auto &a : p) os << a << " "; os << '\n'; return os; } const int MAXN = 2e5 + 5, MOD = 998244353, IINF = 1e9 + 7, MOD2 = 1000000007; const double eps = 1e-9; const ll LINF = 1e18L + 5; const int B = 320; // mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); // int get_rand(int l, int r){ return uniform_int_distribution<int>(l, r)(rng); } ll fpow(ll x, ll exp, ll mod = LLONG_MAX){ ll res = 1; while(exp){ if(exp & 1) res = res * x % mod; x = x * x % mod; exp >>= 1;} return res; } #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder_modint { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename conditional<is_same<T, __int128_t>::value || is_same<T, __int128>::value, true_type, false_type>::type; template <class T> using is_unsigned_int128 = typename conditional<is_same<T, __uint128_t>::value || is_same<T, unsigned __int128>::value, true_type, false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename conditional<is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, true_type, false_type>::type; template <class T> using is_signed_int = typename conditional<(is_integral<T>::value && is_signed<T>::value) || is_signed_int128<T>::value, true_type, false_type>::type; template <class T> using is_unsigned_int = typename conditional<(is_integral<T>::value && is_unsigned<T>::value) || is_unsigned_int128<T>::value, true_type, false_type>::type; template <class T> using to_unsigned = typename conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename conditional<is_signed<T>::value, make_unsigned<T>, common_type<T>>::type>::type; #else template <class T> using is_integral = typename is_integral<T>; template <class T> using is_signed_int = typename conditional<is_integral<T>::value && is_signed<T>::value, true_type, false_type>::type; template <class T> using is_unsigned_int = typename conditional<is_integral<T>::value && is_unsigned<T>::value, true_type, false_type>::type; template <class T> using to_unsigned = typename conditional<is_signed_int<T>::value, make_unsigned<T>, common_type<T>>::type; #endif template <class T> using is_signed_int_t = enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = is_base_of<modint_base, T>; template <class T> using is_modint_t = enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public true_type {}; template <class T> using is_dynamic_modint_t = enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder_modint using mint = atcoder_modint::modint998244353; // need modint vector<mint> fac, inv; inline void init (int n) { fac.resize(n + 1); inv.resize(n + 1); fac[0] = inv[0] = 1; rep (i, 1, n + 1) fac[i] = fac[i - 1] * i; inv[n] = fac[n].inv(); for (int i = n; i > 0; --i) inv[i - 1] = inv[i] * i; } inline mint C(int n, int k) { if (k > n || k < 0) return 0; return fac[n] * inv[k] * inv[n - k]; } inline mint H(int n, int m) { return C(n + m - 1, m); } struct FenwickTree{ vector<ll> BIT; FenwickTree(int n) : BIT(n + 1, 0) {} void mod(int x, ll val) { while(x < BIT.size()){ BIT[x] += val; x += x & -x; } } ll query(int x) { ll res = 0; while (x) { res += BIT[x]; x -= x & -x; } return res; } ll rquery(int l, int r) { return query(r) - query(l - 1); } }; void solve() { int n; cin >> n; init(2 * n); FenwickTree bit(n); mint ans = 0; rep (i, 0, n) { int p; cin >> p; int a = bit.query(p), b = i - a, c = p - 1 - a, d = n - 1 - a - b - c; ans += C(a + d, a) * C(b + c, b); bit.mod(p, 1); } cout << ans.val() << '\n'; } int main() { ZTMYACANESOCUTE; int T = 1; // cin >> T; while (T--) { solve(); } }