結果
問題 | No.2403 "Eight" Bridges of Königsberg |
ユーザー | ysuzuki5321 |
提出日時 | 2024-11-13 15:12:43 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 34 ms / 2,000 ms |
コード長 | 57,564 bytes |
コンパイル時間 | 6,433 ms |
コンパイル使用メモリ | 260,560 KB |
実行使用メモリ | 19,120 KB |
最終ジャッジ日時 | 2024-11-13 15:12:52 |
合計ジャッジ時間 | 8,557 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,820 KB |
testcase_01 | AC | 3 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 16 ms
6,816 KB |
testcase_05 | AC | 29 ms
6,816 KB |
testcase_06 | AC | 32 ms
6,816 KB |
testcase_07 | AC | 20 ms
6,816 KB |
testcase_08 | AC | 23 ms
6,816 KB |
testcase_09 | AC | 34 ms
6,820 KB |
testcase_10 | AC | 32 ms
6,816 KB |
testcase_11 | AC | 25 ms
6,820 KB |
testcase_12 | AC | 33 ms
6,820 KB |
testcase_13 | AC | 23 ms
6,816 KB |
testcase_14 | AC | 3 ms
6,820 KB |
testcase_15 | AC | 3 ms
6,816 KB |
testcase_16 | AC | 3 ms
6,816 KB |
testcase_17 | AC | 3 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 24 ms
19,120 KB |
testcase_20 | AC | 7 ms
8,008 KB |
testcase_21 | AC | 14 ms
12,236 KB |
testcase_22 | AC | 22 ms
17,540 KB |
testcase_23 | AC | 21 ms
17,160 KB |
testcase_24 | AC | 17 ms
14,948 KB |
testcase_25 | AC | 17 ms
14,408 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 25 ms
18,340 KB |
testcase_28 | AC | 20 ms
15,372 KB |
testcase_29 | AC | 6 ms
7,496 KB |
testcase_30 | AC | 11 ms
10,696 KB |
testcase_31 | AC | 24 ms
18,476 KB |
testcase_32 | AC | 3 ms
6,816 KB |
testcase_33 | AC | 9 ms
9,288 KB |
testcase_34 | AC | 5 ms
6,816 KB |
ソースコード
#include <stdio.h>#include <sstream>#include <string.h>#include <vector>#include <map>#include <algorithm>#include <utility>#include <set>#include <cctype>#include <queue>#include <stack>#include <cstdio>#include <cstdlib>#include <cmath>#include <deque>#include <limits>#include <iomanip>#include <ctype.h>#include <unordered_map>#include <random>#include <numeric>#include <iostream>#include <array>#include <atcoder/all>#include <functional>#define _USE_MATH_DEFINES#include <iostream>#include <fstream>#include <math.h>#include <bitset>#include <unordered_set>#pragma intrinsic(_umul128)using namespace std;using namespace atcoder;typedef long long ll;typedef unsigned long long ull;typedef pair<int, int> pii;typedef pair<ll, ll> pll;typedef pair<ll, double> pld;typedef pair<double, double> pdd;typedef pair<double, ll> pdl;typedef pair<int, char> pic;typedef vector<ll> vl;typedef vector<double> vd;typedef vector<ull> vul;typedef vector<pll> vpll;typedef vector<int> vi;typedef vector<string> table;typedef priority_queue<ll, vector<ll>, greater<ll>> llgreaterq;typedef priority_queue<pll, vector<pll>, greater<pll>> pllgreaterq;typedef priority_queue<pair<ll, pll>, vector<pair<ll, pll>>, greater<pair<ll, pll>>> plpllgreaterq;typedef priority_queue<vi, vector<vi>, greater<vi>> vigreaterq;typedef priority_queue<vl, vector<vl>, greater<vl >> vlgreaterq;typedef vector<vl> mat;typedef vector<mat> thd;typedef modint1000000007 mint7;typedef modint998244353 mint9;typedef modint mint;template <class o, class p>using pairq = priority_queue<pair<o, p>, vector<pair<o, p>>, greater<pair<o, p>>>;template <class o, class p, class q>using tuple3q = priority_queue<tuple<o, p, q>, vector<tuple<o, p, q>>, greater<tuple<o, p, q>>>;template <class o, class p, class q, class r>using tuple4q = priority_queue<tuple<o, p, q, r>, vector<tuple<o, p, q, r>>, greater<tuple<o, p, q, r>>>;template <class o, class p, class q, class r, class s>using tuple5q = priority_queue<tuple<o, p, q, r, s>, vector<tuple<o, p, q, r, s>>, greater<tuple<o, p, q, r, s>>>;vl dx = { 1,0,-1,0 };vl dy = { 0,1,0,-1 };int dxe[] = { 1,1,0,-1,-1,-1,0,1 };int dye[] = { 0,1,1,1,0,-1,-1,-1 };#define bit(x,v) ((ll)x << v)#define rep(x,n) for(ll x = 0;x < n;x++)#define rep2(x,f,v) for(ll x=f;x<v;x++)#define repe(v,x) for(auto v : x)// 許容する誤差ε#define EPS (1e-10)// 2つのスカラーが等しいかどうか#define EQ(a,b) (std::abs(a-b) < EPS)// 2つのベクトルが等しいかどうか#define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) )#define all(a) a.begin(),a.end()#define all0(a) memset(a,0,sizeof(a))#define allm1(a) memset(a,-1,sizeof(a))#define set_float() cout << fixed << setprecision(12);#define coutl(s) cout <<s <<endl#define pln(s) cout<<s<<"\n"#define ple pln(-1)#define plm(s) cout<<(s).val()<<"\n"#define plm17(s) cout<<modint1000000007(s).val()<<"\n"#define plm9(s) cout<<modint998244353(s).val()<<"\n"#define put_float(v) set_float() \pln(v)#define vinsert(v,p,x) v.insert(v.begin() + p,x)#define vsort(v) sort(all(v));#define vdesc(v) vsort(v); \reverse(all(v))#define gete(u,v) ll u,v; cin>>u>>v; u--;v--;#define getpair(a,b) ll a,b;cin>>a>>b;#define dup(v) v.erase(unique(all(v)),v.end())#define cub(a) (a)*(a)*(a)#define ion(i,j) (i & (1LL << j))#define Len size()#define psp(a,b) push_back(make_pair(a,b))#define psp2(a,b) push(make_pair(a,b))#define cini(a) a; cin >> a#define infa(a,b) (a + b) % INF#define infm(a,b) (a * b) % INF#define infd(a,b) (a * INFinv(b)) % INF#define infs(a,b) (a + INF - inff(b)) % INF#define inf(a) (a) %= INF#define inff(a) ((a + INF) % INF)#define No cout << "No" << endl#define Yes cout << "Yes" << endl#define NO cout << "NO" << endl#define YES cout << "YES" << endl#define errm1 pln(-1);return;#define smal -(ll)1000000009*1000000009#define big (ll)1000000009*1000000009#define frontpop(q) q.front();q.pop()#define toppop(q) q.top();q.pop()#define arr(a,s) a[s]; all0(a);#define nxt(cu) (cu+1) % 2#define chkover(x,y,h,w) (x<0||y<0||x>=h||y>=w)#define psb(v) ll value;cin>>value;v.push_back(value);#define lower_b(v,p) lower_bound(all(v), p)#define lower_bp(v,p) lower_bound(all(v), p) - v.begin()#define upper_b(v,p) upper_bound(all(v), p)#define upper_bp(v,p) upper_bound(all(v), p) - v.begin()#define allpln(v) for(auto &e:v)pln(e)#define MIN(v) *min_element(all(v))#define MAX(v) *max_element(all(v))#define msize 216;#define revarr(p,l,r) reverse(p.begin()+l,p.begin()+r+1)#define reverse_all(p) reverse(all(p))#define cill(x) ll x;cin>>x#define cilll(x,y) ll x,y;cin>>x>>y#define bitn(x,k)(((x)>>(k))&1)#define iotan(a,n) iota(all(a),n)#define cline(a,k) vl a(k); rep(i,k){cin>>a[i];}#define clineu(a,k) vul a(k); rep(i,k){cin>>a[i];}#define clines(a,k) vector <string> a(k); rep(i,k){cin>>a[i];}#define cindec(a) ll a; cin>> a; a--;template <typename T, typename U>T SUM(const vector<U>& A) {T sum = 0;for (auto&& a : A) sum += a;return sum;}ll ceil(ll a, ll b) { return a > 0 ? (a - 1) / b + 1 : a / b; }ll n, m;bool chmin(ll& a, ll b) {if (a > b) {a = b; return 1;}return 0;}bool chmind(double& a, double b) {if (a > b) {a = b; return 1;}return 0;}template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }ll INF = 1000000007;const int MAX = 3000010;void cout2(ll val) {if (val >= big) {pln(-1);}else {pln(val);}}void cout3(ll val) {if (val >= INF) {pln(-1);}else {pln(val);}}template <typename T>vector<T> merge_arr(vector<T>& a, vector<T>& b) {vector<T> c(a.size() + b.size());std::merge(all(a), all(b), c.begin());return c;}string padleft(string x, ll dig, char c) {ll si = x.size();for (ll i = 0; i < dig - si; i++){x = c + x;}return x;}long long fac[MAX], finv[MAX], inv[MAX], called;void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAX; i++) {fac[i] = fac[i - 1] * i % INF;inv[i] = INF - inv[INF % i] * (INF / i) % INF;finv[i] = finv[i - 1] * inv[i] % INF;}}void COMinit998244353() {INF = 998244353;COMinit();called = 1;}void COMinit1000000007() {INF = 1000000007;COMinit();called = 1;}ll gfac(ll x) {if (!called) {COMinit();called = 1;}return fac[x];}// 二項係数計算long long COM(int n, int k) {if (!called) {COMinit();called = 1;}if (n < k) return 0;if (n < 0 || k < 0) return 0;return fac[n] * (finv[k] * finv[n - k] % INF) % INF;}modint998244353 COM2(ll n, ll k) {modint998244353 res = 1;rep(i, k) {res *= (n - i);res /= (i + 1);}return res;}ll getpow(ll b, ll x, ll md) {ll t = b % md;ll res = 1;while (x > 0){if (x & 1) {res *= t;res %= md;}x >>= 1;t *= t;t %= md;}return res % md;}ull getpowul(ull b, ull x, ull md) {ull t = b % md;ull res = 1;while (x > 0){if (x & 1) {res *= t;res %= md;}x >>= 1;t *= t;t %= md;}return res % md;}ll getpow(ll b, ll x) {return getpow(b, x, INF);}/// 素数を法とする場合ll modinv(ll x) {return getpow(x, INF - 2);}ll extgcd(ll a, ll b, ll& x, ll& y) {ll d = a;if (b != 0) {d = extgcd(b, a % b, y, x);y -= (a / b) * x;}else {x = 1; y = 0;}return d;}/// <summary>/// 素数を法としない場合/// </summary>/// <param name="a"></param>/// <param name="m"></param>/// <returns></returns>ll modinv(ll a, ll m) {ll x, y;extgcd(a, m, x, y);return (m + x % m) % m;}ll gcd(ll a, ll b) {if (b == 0) return a;return gcd(b, a % b);}class m_random {std::mt19937 mt;std::uniform_int_distribution<> rand100;public:m_random(ll mi, ll ma) {init_random(mi, ma);}void init_random(ll mi, ll ma) {std::random_device rnd; // 非決定的な乱数生成器を生成mt = std::mt19937(rnd()); // メルセンヌ・ツイスタの32ビット版、引数は初期シード値rand100 = std::uniform_int_distribution<>(mi, ma);}ll get() {return rand100(mt);}};class m_sampling {std::mt19937 mt;std::normal_distribution<double> rand;public:m_sampling(double sigma) {init_sampling(sigma);}void init_sampling(double sigma) {std::random_device rnd;mt = std::mt19937(rnd());rand = std::normal_distribution<double>(0.0, sigma);}double get() {return rand(mt);}};typedef vector<modint998244353> vml;typedef vector<vml> matm;typedef vector<modint1000000007> vml2;typedef vector<vml2> matm2;typedef vector<modint> vml3;typedef vector<vml3> matm3;#define cmat(n,s,ss) mat n(s,vl(ss))#define cmatm(n,s,ss) matm n(s,vml(ss))#define cmatm2(n,s,ss) matm2 n(s,vml2(ss))#define cmatm3(n,s,ss) matm3 n(s,vml3(ss))// Union findvl pr;vl lank;vl udpt;void uini(int _n) {_n++; // 一個拡張しておくpr = vl(_n + 1);lank = vl(_n + 1);udpt = vl(_n + 1, 0);for (ll i = 0; i <= _n; i++){pr[i] = i;lank[i] = 1;}}int parent(int x) {if (x == pr[x]) return x;auto paren = parent(pr[x]);udpt[x] = udpt[paren] + 1;return pr[x] = paren;}int same(int x, int y) {return parent(x) == parent(y);}bool unit(int x, int y) {int px = parent(x);int py = parent(y);if (px == py) return false;if (lank[py] <= lank[px]) {pr[py] = px;lank[px] += lank[py];}else {pr[px] = py;lank[py] += lank[px];}return true;}ll unisize(ll i) {return lank[parent(i)];}bool unitm(int x, int y) {int px = parent(x);int py = parent(y);if (px == py) return false;if (lank[py] < lank[px]) {pr[py] = px;lank[px] += lank[py];}else {pr[px] = py;lank[py] += lank[px];}return true;}/// <summary>/// 数字の小さい方を親にするように処理/// </summary>/// <param name="x"></param>/// <param name="y"></param>/// <returns></returns>bool unitlow(int x, int y) {int px = parent(x);int py = parent(y);if (px == py) return false;if (py < px) {pr[py] = px;lank[px] += lank[py];}else {pr[px] = py;lank[py] += lank[px];}return true;}ll clamp(ll t, ll l, ll r) {return max(l, min(r, t));}int H;int left(int i) {return i * 2 + 1;}int right(int i) {return i * 2 + 2;}class edge {public:int from, to, i;ll val;ll cap, rev, icap;edge() {}edge(ll to) : to(to) {}edge(ll to, ll i) : to(to), i(i) {}edge(ll from, ll to, ll val) : from(from), to(to), val(val) {}void flowEdge(ll _to, ll _cap, ll _rev) {to = _to;cap = _cap;icap = _cap;rev = _rev;}};typedef vector<vector<edge>> vve;class LCA {private:vector<vector<edge>> v;vector<vector<int>> parent;vector<int> depth;ll root;void dfs(int n, int m, int d) {parent[0][n] = m;depth[n] = d;for (auto x : v[n]) {if (x.to != m) dfs(x.to, n, d + 1);}}public:LCA() {}LCA(ll N, ll root, vector<vector<edge>>& tree) {v = tree;this->root = root;parent = vector<vector<int>>(21, vector<int>(N + 1, 0));depth = vector<int>(N + 1, 0);dfs(root, -1, 0);for (int j = 0; j + 1 < 20; j++) {for (int i = 1; i <= N; i++) {if (parent[j][i] < 0) parent[j + 1][i] = -1;else parent[j + 1][i] = parent[j][parent[j][i]];}}}int lca(int n, int m) {if (depth[n] > depth[m]) swap(n, m);if (n == root)return root;for (int j = 0; j < 20; j++) {if ((depth[m] - depth[n]) >> j & 1) m = parent[j][m];}if (n == m) return n;for (int j = 19; j >= 0; j--) {if (parent[j][n] != parent[j][m]) {n = parent[j][n];m = parent[j][m];}}return parent[0][n];}int dep(int n) { return depth[n]; }};ll k;int _rank[1010];int temp[1010];bool compare_sa(int i, int j) {if (_rank[i] != _rank[j]) return _rank[i] < _rank[j];else {int ri = i + k <= n ? _rank[i + k] : -1;int rj = j + k <= n ? _rank[j + k] : -1;return ri < rj;}}void construct_sa(string S, int* sa) {n = S.length();for (ll i = 0; i <= n; i++){sa[i] = i;_rank[i] = i < n ? S[i] : -1;}for (k = 1; k <= n; k *= 2){sort(sa, sa + n + 1, compare_sa);// saはソート後の接尾辞の並びになっている、rankは元の位置のindexを保持したまま、更新されている。// ピンとこなかった部分temp[sa[0]] = 0;for (ll i = 1; i <= n; i++){temp[sa[i]] = temp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);}for (ll i = 0; i <= n; i++){_rank[i] = temp[i];}}}bool contain(string S, int* sa, string T) {int a = 0, b = S.length();// sa は 接尾辞が辞書順に並んでいる、入っているのはその位置のインデックスwhile (b - a > 1) {int c = (a + b) / 2;if (S.compare(sa[c], T.length(), T) < 0) a = c;else b = c;}return S.compare(sa[b], T.length(), T) == 0;}#define bit(x,v) ((ll)x << v)class BIT {static const int MAX_N = 500010;public:vl bit;ll n;BIT() { bit = vl(MAX_N + 1, 0); }BIT(ll _n) {bit = vl(_n * 2 + 10, 0);n = _n;}ll sum(int i) {ll s = 0;while (i > 0){s += bit[i];i -= i & -i;}return s;}void add(int i, int x) {while (i <= n){bit[i] += x;i += i & -i;}}};struct UnionFind {vector<int> A;UnionFind(int n) : A(n, -1) {}int find(int x) {if (A[x] < 0) return x;return A[x] = find(A[x]);}void unite(int x, int y) {x = find(x), y = find(y);if (x == y) return;if (A[x] > A[y]) swap(x, y);A[x] += A[y];A[y] = x;}int ngroups() {int ans = 0;for (auto a : A) if (a < 0) ans++;return ans;}};vector<ll> getp(ll n) {vector<ll> res;if (n % 2 == 0) {res.push_back(2);while (n % 2 == 0)n /= 2;}for (ll i = 3; i * i <= n; i += 2){if (n % i == 0) {res.push_back(i);while (n % i == 0)n /= i;}}if (n != 1) res.push_back(n);return res;}vector<ll> getpp(ll n) {vector<ll> res;if (n % 2 == 0) {res.push_back(2);while (n % 2 == 0)n /= 2;}for (ll i = 3; i * i * i <= n; i += 2){if (n % i == 0) {res.push_back(i);while (n % i == 0)n /= i;}}if (n != 1) res.push_back(n);return res;}vector<ll> getp2(ll n) {vector<ll> res;if (n % 2 == 0) {while (n % 2 == 0) { n /= 2; res.push_back(2); }}for (ll i = 3; i * i <= n; i += 2){if (n % i == 0) {while (n % i == 0) { n /= i; res.push_back(i); }}}if (n != 1) res.push_back(n);return res;}vector<pll> getp3(ll n) {vector<pll> res;int si = 0;if (n % 2 == 0) {res.push_back(make_pair(2, 0));while (n % 2 == 0) { n /= 2; res[si].second++; }si++;}for (ll i = 3; i * i <= n; i += 2){if (n % i == 0) {res.push_back(make_pair(i, 0));while (n % i == 0) { n /= i; res[si].second++; }si++;}}if (n != 1) { res.push_back(make_pair(n, 1)); }return res;}vector<ll> getDivisors(ll n) {vector<ll> res;res.push_back(1);if (1 < n)res.push_back(n);for (ll i = 2; i * i <= n; i++){if (n % i == 0) {res.push_back(i);if (n / i != i)res.push_back(n / i);}}vsort(res);return res;}struct ve {public:vector<ve> child;int _t = INF;ve(int t) :_t(t) {}ve(ve _left, ve _right) {_t = _left._t + _right._t;child.push_back(_left);child.push_back(_right);}bool operator<(const ve& t) const {return _t > t._t;}};vector<bool> elas(ll n) {n++;vector<bool> r(n, 1);r[0] = 0;r[1] = 0;ll tw = 4;while (tw < n) {r[tw] = false;tw += 2;}ll th = 6;while (th < n) {r[th] = false;th += 3;}ll fv = 10;while (fv < n) {r[fv] = false;fv += 5;}for (ll i = 6; i * i < n; i += 6){ll bf = i - 1;if (r[bf]) {ll ti = bf * 2;while (ti < n){r[ti] = false;ti += bf;}}ll nx = i + 1;if (r[nx]) {ll ti = nx * 2;while (ti < n){r[ti] = false;ti += nx;}}}return r;}bool isPrime(ll v) {if (v == 1 || v == 0)return false;for (ll i = 2; i * i <= v; i++){if (v % i == 0) return false;}return true;}class SegTree {public:const static int MAX_N = 1000100;const static int DAT_SIZE = (1 << 20) - 1;int N, Q;int A[MAX_N];ll MAX = big;ll data[DAT_SIZE], datb[DAT_SIZE];void init(int _n) {N = 1;while (N < _n) N <<= 1;memset(data, 0, sizeof(data));memset(datb, 0, sizeof(datb));}void init(int _n, ll iv) {N = 1;while (N < _n) N <<= 1;rep(i, DAT_SIZE) {data[i] = iv;datb[i] = iv;}}void initRMQ(int _n) {N = 1;while (N < _n) N *= 2;// 全ての値をbigにrep(i, 2 * N - 1)data[i] = MAX;}void updateRMQ(int k, ll a) {k += N - 1;data[k] = a;while (k > 0) {k = (k - 1) / 2;data[k] = min(data[k * 2 + 1], data[k * 2 + 2]);}}ll RMQ(int a, int b) {return queryRMQ(a, b + 1, 0, 0, N);}ll queryRMQ(int a, int b, int k, int l, int r) {if (r <= a || b <= l)return MAX;// [a,b)が[l,r)を完全に含んでいればif (a <= l && r <= b)return data[k];// そうでなければ2つの子の最小値// n=16// 0,16→0,8 8,16// 0,4 4,8 8,12 12,16ll vl = queryRMQ(a, b, k * 2 + 1, l, (l + r) / 2);ll vr = queryRMQ(a, b, k * 2 + 2, (l + r) / 2, r);return min(vl, vr);}void add(int a, int b, int x) {add(a, b + 1, x, 0, 0, N);}void add(int a, int b, int x, int k, int l, int r) {if (a <= l && r <= b) {data[k] += x;}else if (l < b && a < r) {datb[k] += (min(b, r) - max(a, l)) * x;add(a, b, x, k * 2 + 1, l, (l + r) / 2);add(a, b, x, k * 2 + 2, (l + r) / 2, r);}}void change(int a, int b, int x) {change(a, b + 1, x, 0, 0, N);}void change(int a, int b, int x, int k, int l, int r) {if (a <= l && r <= b) {data[k] = x;}else if (l < b && a < r) {datb[k] = x;change(a, b, x, k * 2 + 1, l, (l + r) / 2);change(a, b, x, k * 2 + 2, (l + r) / 2, r);}}ll sum(int a, int b) {return sum(a, b + 1, 0, 0, N);}ll sum(int a, int b, int k, int l, int r) {if (b <= l || r <= a) {return 0;}if (a <= l && r <= b) {return data[k] * (r - l) + datb[k];}ll res = (min(b, r) - max(a, l)) * data[k];res += sum(a, b, k * 2 + 1, l, (l + r) / 2);res += sum(a, b, k * 2 + 2, (l + r) / 2, r);return res;}};class LazySegTree {private:int N;vl node, lazy;public:void init(int _n) {N = 1;while (N < _n) N <<= 1;node.resize(2 * N, 0);lazy.resize(2 * N, 0);}// k 番目のノードについて遅延評価を行うvoid eval(int k, int l, int r) {// 遅延配列が空でない場合、自ノード及び子ノードへの// 値の伝播が起こるif (lazy[k] != 0) {node[k] += lazy[k];// 最下段かどうかのチェックをしよう// 子ノードは親ノードの 1/2 の範囲であるため、// 伝播させるときは半分にするif (r - l > 1) {lazy[2 * k + 1] += lazy[k] / 2;lazy[2 * k + 2] += lazy[k] / 2;}// 伝播が終わったので、自ノードの遅延配列を空にするlazy[k] = 0;}}void add(int a, int b, ll x) {addbody(a, b + 1, x);}void addbody(int a, int b, ll x, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;// k 番目のノードに対して遅延評価を行うeval(k, l, r);// 範囲外なら何もしないif (b <= l || r <= a) return;// 完全に被覆しているならば、遅延配列に値を入れた後に評価if (a <= l && r <= b) {lazy[k] += (r - l) * x;eval(k, l, r);}// そうでないならば、子ノードの値を再帰的に計算して、// 計算済みの値をもらってくるelse {addbody(a, b, x, 2 * k + 1, l, (l + r) / 2);addbody(a, b, x, 2 * k + 2, (l + r) / 2, r);node[k] = node[2 * k + 1] + node[2 * k + 2];}}ll getsum(int a, int b, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;if (b <= l || r <= a) return 0;// 関数が呼び出されたら評価!eval(k, l, r);if (a <= l && r <= b) return node[k];ll vl = getsum(a, b, 2 * k + 1, l, (l + r) / 2);ll vr = getsum(a, b, 2 * k + 2, (l + r) / 2, r);return vl + vr;}ll getMax(int a, int b) {// 半開区間に変換return getMaxBdy(a, b + 1);}ll getMaxBdy(int a, int b, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;if (b <= l || r <= a) return -big;// 関数が呼び出されたら評価!eval(k, l, r);if (a <= l && r <= b) return node[k];ll vl = getMaxBdy(a, b, 2 * k + 1, l, (l + r) / 2);ll vr = getMaxBdy(a, b, 2 * k + 2, (l + r) / 2, r);return max(vl, vr);}};class LazySegTreeRMQ {private:int N;vl node, lazy;public:void init(int _n) {N = 1;while (N < _n) N <<= 1;node.resize(2 * N, 0);lazy.resize(2 * N, 0);}// k 番目のノードについて遅延評価を行うvoid eval(int k, int l, int r) {if (lazy[k] != 0) {node[k] = lazy[k];if (r - l > 1) {lazy[2 * k + 1] = lazy[k];lazy[2 * k + 2] = lazy[k];}lazy[k] = 0;}}void evalAdd(int k, int l, int r) {if (lazy[k] != 0) {node[k] += lazy[k];if (r - l > 1) {lazy[2 * k + 1] += lazy[k];lazy[2 * k + 2] += lazy[k];}lazy[k] = 0;}}void add(int a, int b, ll x) {addbody(a, b + 1, x);}void addbody(int a, int b, ll x, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;// k 番目のノードに対して遅延評価を行うevalAdd(k, l, r);// 範囲外なら何もしないif (b <= l || r <= a) return;// 完全に被覆しているならば、遅延配列に値を入れた後に評価if (a <= l && r <= b) {lazy[k] += x;evalAdd(k, l, r);}// そうでないならば、子ノードの値を再帰的に計算して、// 計算済みの値をもらってくるelse {addbody(a, b, x, 2 * k + 1, l, (l + r) / 2);addbody(a, b, x, 2 * k + 2, (l + r) / 2, r);node[k] = max(node[2 * k + 1], node[2 * k + 2]);}}void update(int a, int b, ll v) {updateBdy(a, b + 1, v);}void updateBdy(int a, int b, ll x, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;// k 番目のノードに対して遅延評価を行うeval(k, l, r);// 範囲外なら何もしないif (b <= l || r <= a) return;// 完全に被覆しているならば、遅延配列に値を入れた後に評価if (a <= l && r <= b) {if (x > node[k]) {lazy[k] = x;eval(k, l, r);}}// そうでないならば、子ノードの値を再帰的に計算して、// 計算済みの値をもらってくるelse {updateBdy(a, b, x, 2 * k + 1, l, (l + r) / 2);updateBdy(a, b, x, 2 * k + 2, (l + r) / 2, r);node[k] = max(node[2 * k + 1], node[2 * k + 2]);}}ll getMaxAdd(int a, int b) {// 半開区間に変換return getMaxAddBdy(a, b + 1);}ll getMaxAddBdy(int a, int b, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;if (b <= l || r <= a) return -big;// 関数が呼び出されたら評価!evalAdd(k, l, r);if (a <= l && r <= b) return node[k];ll vl = getMaxAddBdy(a, b, 2 * k + 1, l, (l + r) / 2);ll vr = getMaxAddBdy(a, b, 2 * k + 2, (l + r) / 2, r);return max(vl, vr);}ll getMax(int a, int b) {// 半開区間に変換return getMaxBdy(a, b + 1);}ll getMaxBdy(int a, int b, int k = 0, int l = 0, int r = -1) {if (r < 0) r = N;if (b <= l || r <= a) return -big;// 関数が呼び出されたら評価!eval(k, l, r);if (a <= l && r <= b) return node[k];ll vl = getMaxBdy(a, b, 2 * k + 1, l, (l + r) / 2);ll vr = getMaxBdy(a, b, 2 * k + 2, (l + r) / 2, r);return max(vl, vr);}};class Segment;class Circle;class Point {public:double x, y;Point(double x = 0, double y = 0) :x(x), y(y) {}Point operator + (Point p) { return Point(x + p.x, y + p.y); }Point operator - (Point p) { return Point(x - p.x, y - p.y); }Point operator * (double a) { return Point(a * x, a * y); }Point operator / (double a) { return Point(x / a, y / a); }double abs() { return sqrt(norm()); }double norm() { return x * x + y * y; }bool operator < (const Point& p)const {return x != p.x ? x < p.x : y < p.y;}bool operator == (const Point& p) const {return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS;}// 内積static double dot(Point a, Point b) {return a.x * b.x + a.y * b.y;}// 外積static double cross(Point a, Point b) {return a.x * b.y - a.y * b.x;}static bool isOrthogonal(Point a, Point b) {return EQ(dot(a, b), 0.0);}static bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {return isOrthogonal(a1 - a2, b1 - b2);}static bool isOrthogonal(Segment s1, Segment s2);static bool isPalallel(Point a, Point b) {return EQ(cross(a, b), 0.0);}static bool isPalallel(Point a1, Point a2, Point b1, Point b2) {return isPalallel(a1 - a2, b1 - b2);}static bool isPalallel(Segment s1, Segment s2);static const int COUNTER_CLOCKWISE = 1;static const int CLOCKWISE = -1;static const int ONLINE_BACK = 2;static const int ONLINE_FRONT = -2;static const int ON_SEGMENT = 0;static int bbw(Point p0, Point p1, Point p2) {// 線分はp0とp1でp2がどこにあるかを探るPoint a = p1 - p0;Point b = p2 - p0;if (cross(a, b) > EPS) return COUNTER_CLOCKWISE;if (cross(a, b) < -EPS) return CLOCKWISE;if (dot(a, b) < -EPS) return ONLINE_BACK;if (a.norm() < b.norm()) return ONLINE_FRONT;return ON_SEGMENT;}// 交差しているかstatic bool intersect(Point p1, Point p2, Point p3, Point p4) {return (bbw(p1, p2, p3) * bbw(p1, p2, p4) <= 0&& bbw(p3, p4, p1) * bbw(p3, p4, p2) <= 0);}static bool intersect(Segment s1, Segment s2);static Point project(Segment s, Point p);static Point reflect(Segment s, Point p);static double getDistance(Point a, Point b) {return (a - b).abs();}static double getDistanceLP(Segment s, Point p);static double getDistanceSP(Segment s, Point p);static double getDistance(Segment s1, Segment s2);static Point getIntersection(Segment s1, Segment s2);static pair<Point, Point> crossPoints(Circle c, Segment s);static int contains(vector<Point> g, Point p) {int n = g.size();bool x = false;rep(i, n) {Point a = g[i] - p, b = g[(i + 1) % n] - p;// 線の上に載っているかif (std::abs(cross(a, b)) < EPS && dot(a, b) < EPS) return 1;// pを基準として上下にあるか// または外積が正か?(→にあるか)if (a.y > b.y) swap(a, b);if (a.y < EPS && EPS < b.y && cross(a, b) > EPS) x = !x;}return x ? 2 : 0;}static vector<Point> andrewScan(vector<Point> s) {vector<Point> u, l;ll si = s.size();if (si < 3) return s;sort(all(s));u.push_back(s[0]);u.push_back(s[1]);l.push_back(s[si - 1]);l.push_back(s[si - 2]);for (int i = 2; i < si; i++) {for (int _n = u.size(); _n >= 2 && bbw(u[_n - 2], u[_n - 1], s[i]) > CLOCKWISE; _n--) {u.pop_back();}u.push_back(s[i]);}for (int i = s.size() - 3; i >= 0; i--) {for (int _n = l.size(); _n >= 2 && bbw(l[_n - 2], l[_n - 1], s[i]) > CLOCKWISE; _n--) {l.pop_back();}l.push_back(s[i]);}reverse(all(l));for (int i = u.size() - 2; i >= 1; i--){l.push_back(u[i]);}return l;}void get_cin() {cin >> x >> y;}static Point rotate(double r, Point p) {Point ret;ret.x = cos(r) * p.x - sin(r) * p.y;ret.y = sin(r) * p.x + cos(r) * p.y;return ret;}static double computePerimeter(const vector<Point>& hull) {double perimeter = 0.0;for (size_t i = 0; i < hull.size(); i++) {perimeter += getDistance(hull[i], hull[(i + 1) % hull.size()]);}return perimeter;}};class Segment {public:Point p1, p2;Segment() {}Segment(Point p1, Point p2) :p1(p1), p2(p2) {}void get_cin() {cin >> p1.x >> p1.y >> p2.x >> p2.y;}Point p1tp2() {return p2 - p1;}Point p2tp1() {return p1 - p2;}double abs() {return (p2 - p1).abs();}double norm() {return (p2 - p1).norm();}};// 直行bool Point::isOrthogonal(Segment s1, Segment s2) {return EQ(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);}// 平行bool Point::isPalallel(Segment s1, Segment s2) {return EQ(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);}// 交差しているかbool Point::intersect(Segment s1, Segment s2) {return intersect(s1.p1, s1.p2, s2.p1, s2.p2);}Point Point::project(Segment s, Point p) {Point base = s.p2 - s.p1;double r = Point::dot(p - s.p1, base) / base.norm();return s.p1 + base * r;}Point Point::reflect(Segment s, Point p) {return (project(s, p) * 2) - p;}double Point::getDistanceLP(Segment s, Point p) {return std::abs(cross(s.p2 - s.p1, p - s.p1) / (s.p2 - s.p1).abs());}double Point::getDistanceSP(Segment s, Point p) {if (dot(s.p2 - s.p1, p - s.p1) < 0.0) return (p - s.p1).abs();if (dot(s.p1 - s.p2, p - s.p2) < 0.0) return (p - s.p2).abs();return getDistanceLP(s, p);}double Point::getDistance(Segment s1, Segment s2) {if (intersect(s1, s2)) return 0.0;return min({ getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2),getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2) });}Point Point::getIntersection(Segment s1, Segment s2) {// (s1.p1 - s2.p1).norm()auto bs = s1.p2 - s1.p1;auto n1 = s2.p1 - s1.p1;auto n2 = s2.p2 - s1.p1;auto c1 = std::abs(cross(n1, bs)) / bs.norm();auto c2 = std::abs(cross(n2, bs)) / bs.norm();return s2.p1 + (s2.p2 - s2.p1) * (c1 / (c1 + c2));// c1:c2=t:1-t// c2t=(1-t)c1// t/(1-t)=c1/(c1+c2)//}double arg(Point p) { return atan2(p.y, p.x); }Point polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }class Circle {public:Point c;double r;Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}void get_cin() {cin >> c.x >> c.y >> r;}static pair<Point, Point> getCrossPoints(Circle c1, Circle c2) {double d = (c1.c - c2.c).abs(); // 中心点どうしの距離double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));double t = arg(c2.c - c1.c);return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));}};pair<Point, Point> Point::crossPoints(Circle c, Segment s) {auto pp = project(s, c.c);auto f = (pp - c.c).norm();auto mu = sqrt(c.r * c.r - f);// 単位ベクトルauto e = s.p1tp2() / s.p1tp2().abs();return make_pair(pp + e * mu, pp - e * mu);}ll divRm(string s, ll x) {ll r = 0;for (ll i = 0; i < s.size(); i++){r *= 10;r += s[i] - '0';r %= x;}return r;}ll cmbi(ll x, ll b) {ll res = 1;for (size_t i = 0; i < b; i++){res *= x - i;res %= INF;res *= inv[b - i];res %= INF;}return res;}map<ll, ll> dgmemo;ll digsum(ll x) {if (dgmemo.count(x))return dgmemo[x];ll res = 0;while (x > 0){res += x % 10;x /= 10;}return res;}bool check_parindrome(string s) {int n = s.size();rep(i, n / 2) {if (s[i] != s[n - i - 1]) {return false;}}return true;}ll npr(ll n, ll r) {if (r == 0)return 1;return inff(fac[n] * modinv(fac[n - r]));}vl zalgo(string s) {ll c = 0;vl a(s.size());ll si = s.size();rep2(i, 1, s.size()) {if (i + a[i - c] < c + a[c]){a[i] = a[i - c];}else {ll j = max(0LL, a[c] - (i - c));while (i + j < si && s[j] == s[i + j]){j++;}a[i] = j;c = i;}}a[0] = s.size();return a;}// 数値文字列の除算string divStrNum(string s, ll v) {ll si = s.size();ll val = 0;string res = "";for (ll i = 0; i < si; i++){val *= 10;val += s[i] - '0';ll add = val / v;val %= v;if (add == 0 && res == "")continue;res += add + '0';}if (res == "")return "0";return res;}// 数値文字列の減算string difStrNum(string s, ll v) {ll si = s.size();bool dec = false;for (ll i = si - 1; i >= 0; i--){if (v == 0)break;ll t = v % 10;v /= 10;ll u = (s[i] - '0');if (dec) {if (u == 0) {s[i] = 9 - t;dec = true;continue;}u--;}if (u < t) {s[i] = 10 - (t - u);dec = true;}else {s[i] -= t;dec = false;}}return s;}// 数値文字列を1減らした数string decStrNum(string s) {ll si = s.size();for (int i = si - 1; i >= 0; i--){if (s[i] == '0') {s[i] = '9';continue;}s[i] = s[i] - 1;break;}return s;}void dateCal(int x) {int lp = x / 7;string date[] = { "月曜日","火曜日","水曜日","木曜日","金曜日","土曜日","日曜日" };rep(i, 7) {int st = i;rep(j, lp) {cout << "\t" << date[i] << x << "-" << st << "\t" << "NULL" << "\t" << x << "\t" << st << "\t" << 0 << endl;st += 7;}}}// 行列べき乗計算mat mul(mat& A, mat& B) {ll as = A.size();ll bs = B.size();mat C(A.size(), vl(B[0].size()));rep(i, as) {rep(t, bs) {ll bz = B[0].size();rep(j, bz) {C[i][j] = inff(C[i][j] + A[i][t] * B[t][j]);}}}return C;}mat pow(mat A, ll x) {if (A.size() == 0)return A;mat B(A.size(), vl(A.size()));rep(i, A.size()) {B[i][i] = 1;}while (x > 0){if (x & 1)B = mul(B, A);A = mul(A, A);x >>= 1;}return B;}class dinic {public:vve G;vl level;vl iter;dinic(int _n) : dinic(vve(_n + 1)) {}dinic(vve g) {G = g;level = vl(g.size());iter = vl(g.size());}void add_edge(ll from, ll to, ll cap) {auto e1 = edge();auto e2 = edge();e1.flowEdge(to, cap, G[to].size());G[from].push_back(e1);e2.flowEdge(from, 0, G[from].size() - 1);G[to].push_back(e2);}void bfs(ll s) {fill(all(level), -1);queue<ll> q;level[s] = 0;q.push(s);while (!q.empty()){ll v = frontpop(q);for (auto e : G[v]) {if (e.cap > 0 && level[e.to] < 0) {level[e.to] = level[v] + 1;q.push(e.to);}}}}ll dfs(ll v, ll t, ll f) {if (v == t)return f;for (ll& i = iter[v]; i < G[v].size(); i++) {edge& e = G[v][i];if (e.cap > 0 && level[v] < level[e.to]) {ll d = dfs(e.to, t, min(f, e.cap));if (d > 0) {e.cap -= d;G[e.to][e.rev].cap += d;return d;}}}return 0;}ll max_flow(ll s, ll t) {ll flow = 0;for (;;) {bfs(s);if (level[t] < 0)return flow;fill(all(iter), 0);ll f;while ((f = dfs(s, t, big)) > 0){flow += f;}}}};const ull BS = 1000000007;// aはbに含まれているか?bool rolling_hash(string a, string b) {int al = a.size(), bl = b.size();if (al > bl)return false;// BSのal乗を計算ull t = 1;rep(i, al)t *= BS;// aとbの最初のal文字に関するハッシュ値を計算ull ah = 0, bh = 0;rep(i, al) ah = ah * BS + a[i];rep(i, al) bh = bh * BS + b[i];// bの場所を一つずつ進めながらハッシュ値をチェックfor (ll i = 0; i + al <= bl; i++){if (ah == bh)return true;if (i + al < bl)bh = bh * BS + b[i + al] - b[i] * t;}return false;}mat sans(9, vl(9, -1));bool srec(ll x, ll y) {if (x == 9)return true;vl use(10, 0);rep(i, 9) {if (sans[i][y] == -1)continue;use[sans[i][y]] = 1;}rep(j, 9) {if (sans[x][j] == -1)continue;use[sans[x][j]] = 1;}ll px = x % 3;ll py = y % 3;ll tx = x - px + 3;ll ty = y - py + 3;rep2(i, x - px, tx) {rep2(j, y - py, ty) {if (sans[i][j] == -1)continue;use[sans[i][j]] = 1;}}ll nx, ny;if (y == 8) {nx = x + 1;ny = 0;}else {nx = x;ny = y + 1;}if (sans[x][y] != -1) {if (srec(nx, ny)) {return true;}return false;}rep2(i, 1, 10) {if (use[i])continue;sans[x][y] = i;if (srec(nx, ny)) {return true;}sans[x][y] = -1;}return false;}void sudoku() {vector<string> tb;rep(i, 9) {string s;cin >> s;tb.push_back(s);rep(j, 9) {if (tb[i][j] != '.') {sans[i][j] = tb[i][j] - '0';}}}srec(0, 0);rep(i, 9) {rep(j, 9) {cout << sans[i][j];}cout << endl;}}mint ncr(ll n, ll r) {mint v = 1;rep(i, r) {v *= (n - i);v *= inv[i + 1];}return v;}modint1000000007 ncr2(ll n, ll r) {modint1000000007 v = 1;rep(i, r) {v *= (n - i);v /= i + 1;}return v;}ll ncr3(ll n, ll r) {ll v = 1;rep(i, r) {v *= (n - i);v /= i + 1;}return v;}ll sq(ll x) {return x * x;}ll phi(ll x) {auto p = getp(x);ll res = x;for (auto v : p) {res /= v;res *= v - 1;}return res;}const ull MASK30 = (1ULL << 30) - 1;const ull MASK31 = (1ULL << 31) - 1;const ull MOD = 2305843009213693953UL;const ull MASK61 = (1ULL << 61UL) - 1UL;//mod 2^61-1を計算する関数ull calc_mod_61(ull x){ull xu = x >> 61;ull xd = x & MASK61;ull res = xu + xd;if (res >= MOD) res -= MOD;return res;}ull mul_61(ull a, ull b){ull au = a >> 31;ull ad = a & MASK31;ull bu = b >> 31;ull bd = b & MASK31;ull mid = ad * bu + au * bd;ull midu = mid >> 30;ull midd = mid & MASK30;return calc_mod_61(au * bu * 2 + midu + (midd << 31) + ad * bd);}vl mulMatVec(mat a, vl b){int n = b.size(); vl ret(n, 0);rep(i, n) rep(j, n)ret[j] = inff(ret[j] + inff(a[i][j] * b[i]));return ret;}ll isqrt(ll N) {ll sqrtN = sqrt(N) - 1;while (sqrtN + 1 <= N / (sqrtN + 1))sqrtN++;return sqrtN;}ll cross(pll l, pll r) {return l.first * r.second - l.second * r.first;}void rotate(vl& v) {v.push_back(v.front());v.erase(v.begin());}class ConvexHullDynamic{typedef long long coef_t;typedef long long coord_t;typedef long long val_t;/** Line 'y=a*x+b' represented by 2 coefficients 'a' and 'b'* and 'xLeft' which is intersection with previous line in hull(first line has -INF)*/private:struct Line{coef_t a, b;double xLeft;enum Type{line, maxQuery, minQuery} type;coord_t val;explicit Line(coef_t aa = 0, coef_t bb = 0) : a(aa), b(bb), xLeft(-INFINITY), type(Type::line), val(0) {}val_t valueAt(coord_t x) const { return a * x + b; }friend bool areParallel(const Line& l1, const Line& l2) { return l1.a == l2.a; }friend double intersectX(const Line& l1, const Line& l2) { return areParallel(l1, l2) ? INFINITY : 1.0 * (l2.b - l1.b) / (l1.a - l2.a); }bool operator<(const Line& l2) const{if (this->type == maxQuery)return this->val < l2.xLeft;if (this->type == minQuery)return this->val > l2.xLeft;if (l2.type == line)return this->a < l2.a;if (l2.type == maxQuery)return this->xLeft < l2.val;if (l2.type == minQuery)return this->xLeft > l2.val;}};bool isMax; //whether or not saved envelope is top(search of max value)public:std::set< Line > hull; //envelope itselfprivate:/** INFO: Check position in hull by iterator* COMPLEXITY: O(1)*/bool hasPrev(std::set< Line >::iterator it) { return it != hull.begin(); }bool hasNext(std::set< Line >::iterator it) { return it != hull.end() && std::next(it) != hull.end(); }/** INFO: Check whether line l2 is irrelevant* NOTE: Following positioning in hull must be true* l1 is next left to l2* l2 is right between l1 and l3* l3 is next right to l2* COMPLEXITY: O(1)*/bool irrelevant(const Line& l1, const Line& l2, const Line& l3) { return intersectX(l1, l3) <= intersectX(l1, l2); }bool irrelevant(std::set< Line >::iterator it){return hasPrev(it) && hasNext(it)&& (isMax && irrelevant(*std::prev(it), *it, *std::next(it))|| !isMax && irrelevant(*std::next(it), *it, *std::prev(it)));}/** INFO: Updates 'xValue' of line pointed by iterator 'it'* COMPLEXITY: O(1)*/std::set< Line >::iterator updateLeftBorder(std::set< Line >::iterator it){if (isMax && !hasPrev(it) || !isMax && !hasNext(it))return it;double val = intersectX(*it, isMax ? *std::prev(it) : *std::next(it));Line buf(*it);it = hull.erase(it);buf.xLeft = val;it = hull.insert(it, buf);return it;}public:explicit ConvexHullDynamic(bool isMax = false) : isMax(isMax) {}/** INFO: Adding line to the envelope* Line is of type 'y=a*x+b' represented by 2 coefficients 'a' and 'b'* COMPLEXITY: Adding N lines(N calls of function) takes O(N*log N) time*/void addLine(coef_t a, coef_t b){//find the place where line will be inserted in setLine l3 = Line(a, b);auto it = hull.lower_bound(l3);//if parallel line is already in set, one of them becomes irrelevantif (it != hull.end() && areParallel(*it, l3)) {if (isMax && it->b < b || !isMax && it->b > b)it = hull.erase(it);elsereturn;}//try to insertit = hull.insert(it, l3);if (irrelevant(it)) {hull.erase(it);return;}//remove lines which became irrelevant after inserting linewhile (hasPrev(it) && irrelevant(std::prev(it))) hull.erase(std::prev(it));while (hasNext(it) && irrelevant(std::next(it))) hull.erase(std::next(it));//refresh 'xLine'it = updateLeftBorder(it);if (hasPrev(it))updateLeftBorder(std::prev(it));if (hasNext(it))updateLeftBorder(std::next(it));}val_t getBest(coord_t x) const{Line q;q.val = x;q.type = isMax ? Line::Type::maxQuery : Line::Type::minQuery;auto bestLine = hull.lower_bound(q);if (isMax) --bestLine;return bestLine->valueAt(x);}};class treelib {public:mat es;vl stop;vl d;treelib(mat _es) : es(_es) {stop.resize(_es.size() + 1, 0);d.resize(_es.size() + 1);}/** first: depth.second : leaf;*/pll deepest(ll x, ll f) {ll a = 0, b = -1;for (auto v : es[x]) {if (stop[v])continue;if (v == f)continue;d[v] = d[x] + 1;auto p = deepest(v, x);if (p.first > a) {a = p.first;b = p.second;}}if (b == -1) {return { 1,x };}else {return { a + 1,b };}}};class treelib2 {public:vector<vpll> es;vl stop;vl d;treelib2(vector<vpll> _es) : es(_es) {stop.resize(_es.size() + 1, 0);d.resize(_es.size() + 1);}/** first: depth.second : leaf;*/pll deepest(ll x, ll f) {ll a = 0, b = -1;for (auto v : es[x]) {ll t = v.first;if (stop[t])continue;if (t == f)continue;d[t] = d[x] + v.second;auto p = deepest(t, x);if (p.first > a) {a = p.first;b = p.second;}}if (b == -1) {return { 1,x };}else {return { a + 1,b };}}};struct scompress {vl mapped, dup;map<ll, ll> mp;};scompress compress(vl& v) {ll n = v.size();vl b(n);rep(i, n) {b[i] = v[i];}vsort(b);dup(b);map<ll, ll> mp;rep(i, b.size()) {mp[b[i]] = i;}vl res(n);rep(i, n) {res[i] = mp[v[i]];}vl bb(b.size());rep(i, b.size()) {bb[i] = mp[b[i]];}return { res,bb,mp };}using ld = double;using P = Point;template <class iter>Circle min_ball(iter left, iter right, int seed = 1333) {const int n = right - left;assert(n >= 1);if (n == 1) {return { *left, ld(0) };}std::mt19937 mt(seed);std::shuffle(left, right, mt);// std::random_shuffle(left, right); // simple but deprecatediter ps = left;using circle = Circle;auto make_circle_3 = [](P& a, P& b, P& c) -> circle {ld A = (b - c).norm(), B = (c - a).norm(), C = (a - b).norm(),S = Point::cross(b - a, c - a);P p = (a * (A * (B + C - A)) + (b * B * (C + A - B)) + c * C * (A + B - C))/ (4 * S * S);ld r2 = (p - a).norm();return { p, r2 };};auto make_circle_2 = [](P& a, P& b) -> circle {P c = (a + b) / (ld)2;ld r2 = (a - c).norm();return { c, r2 };};auto in_circle = [](P& a, circle& c) -> bool {return (a - c.c).norm() <= c.r + EPS;};circle c = make_circle_2(ps[0], ps[1]);// MiniDiscfor (int i = 2; i < n; ++i) {if (!in_circle(ps[i], c)) {// MiniDiscWithPointc = make_circle_2(ps[0], ps[i]);for (int j = 1; j < i; ++j) {if (!in_circle(ps[j], c)) {// MiniDiscWith2Pointsc = make_circle_2(ps[i], ps[j]);for (int k = 0; k < j; ++k) {if (!in_circle(ps[k], c)) {c = make_circle_3(ps[i], ps[j], ps[k]);}}}}}}return c;}vml2 kitamasadfs(vml2 a, vml2 d, ll n) {if (d.size() == n)return d;vml2 res(d.size());if (n < d.size() * 2 || (n & 1)) {auto f = kitamasadfs(a, d, n - 1);res[0] = f[k - 1] * d[0];rep2(i, 1, d.size()) {res[i] = f[i - 1] + f[k - 1] * d[i];}}else {auto v = kitamasadfs(a, d, n / 2);matm2 f(d.size(), vml2(d.size()));f[0] = v;rep2(i, 1, d.size()) {f[i][0] = f[i - 1][k - 1] * d[0];rep2(j, 1, d.size()) {f[i][j] = f[i - 1][j - 1] + f[i - 1][k - 1] * d[j];}}rep(i, d.size()) {rep(j, d.size()) {res[j] += f[i][j] * v[i];}}}return res;}modint1000000007 kitamasa(vml2 a, vml2 d, ll n) {auto v = kitamasadfs(a, d, n);modint1000000007 res = 0;rep(i, d.size()) {res += v[i] * a[i];}return res;}void belman_temp(vector<vpll>& es, vl& d, ll s) {d[s] = 0;rep(i, n + 1) {queue<ll> q;rep2(j, 1, n + 1) {if (d[j] == big)continue;for (auto& v : es[j]) {if (chmin(d[v.first], d[j] + v.second)) {q.push(v.first);}}}if (i < n)continue;while (!q.empty()){auto p = frontpop(q);for (auto& v : es[p]) {if (chmin(d[v.first], -big)) {q.push(v.first);}}}}}vl getpath(mat& es, vl& d, ll s, ll g) {vl res;ll x = s;while (x != g){res.push_back(x);for (auto v : es[x]) {if (d[v] == d[x] - 1) {x = v;break;}}}res.push_back(x);reverse(all(res));return res;}/// <summary>/// ベルマンフォード/// </summary>/// <param name="es"></param>/// <param name="d"></param>/// <param name="s"></param>bool belman(vector<vpll>& es, ll n, vl& d, ll s) {d.resize(n, big);d[s] = 0;rep(i, n) {bool e = false;rep(f, n) {if (d[f] == big)continue;for (auto& v : es[f]) {if (chmin(d[v.first], d[f] + v.second)) {e = true;}}}if (!e) break;}queue<ll> q;rep(f, n) {if (d[f] == big)continue;for (auto& v : es[f]) {if (chmin(d[v.first], d[f] + v.second)) {q.push(v.first);}}}bool e = false;while (!q.empty()){auto p = frontpop(q);for (auto& v : es[p]) {if (d[v.first] > -big) {e = true;d[v.first] = -big;q.push(v.first);}}}return e;}template<class t>void put_line(vector<t>& p) {rep(i, p.size()) {cout << p[i] << " ";}cout << endl;}mat tablecut(ll h, ll w, vector<string> t) {ll top = 0;rep(i, h) {bool ok = true;rep(j, w) {if (t[i][j] == '#') {ok = false;break;}}if (!ok)break;top++;}ll bot = h;for (int i = h - 1; i >= 0; i--){bool ok = true;rep(j, w) {if (t[i][j] == '#') {ok = false;break;}}if (!ok)break;bot--;}ll lf = 0;rep(i, w) {bool ok = true;rep(j, h) {if (t[j][i] == '#') {ok = false;break;}}if (!ok)break;lf++;;}ll ri = w;for (int i = w - 1; i >= 0; i--){bool ok = true;rep(j, h) {if (t[j][i] == '#') {ok = false;break;}}if (!ok)break;ri--;}mat tb(bot - top, vl(ri - lf));rep2(i, top, bot) {rep2(j, lf, ri) {if (t[i][j] == '#') {tb[i - top][j - lf] = 1;}}}return tb;}mat tablerotate(ll h, ll w, mat& a) {mat b(w, vl(h));rep(i, h) {rep(j, w) {b[w - j - 1][i] = a[i][j];}}return b;}ll rangeadd_op(ll l, ll r) {return max(l, r);}ll rangeadd_e() {return -big;}ll range_add_map(ll l, ll r) {if (l == -big)return r;if (r == -big)return l;return l + r;}ll range_add_comp(ll l, ll r) {return l + r;}ll rangeadd_id() {return 0;}ll rangesum_op(ll l, ll r) {return max(0LL, l) + max(0LL, r);}ll rsum_op(ll l, ll r) {return l + r;}ll rangesum_e() {return -big;}struct Qusm {ll a = 0, sz = 0;};Qusm opQusm(Qusm l, Qusm r) {return { l.a + r.a,l.sz + r.sz };}Qusm eQusm() {Qusm q;return q;}Qusm mapQusm(ll l, Qusm v) {return { v.a + v.sz * l,v.sz };}ll cmpQusm(ll ne, ll ol) {return ne + ol;}ll idQusm() {return 0;}lazy_segtree<ll, rangeadd_op, rangeadd_e, ll, range_add_map, range_add_comp, rangeadd_id>create_range_add_st(ll n) {return lazy_segtree<ll,rangeadd_op,rangeadd_e,ll,range_add_map,range_add_comp,rangeadd_id>(n + 1);}lazy_segtree<Qusm, opQusm, eQusm, ll, mapQusm, cmpQusm, idQusm>create_range_add_st3(ll n) {return lazy_segtree<Qusm, opQusm, eQusm, ll, mapQusm, cmpQusm, idQusm>(n + 1);}lazy_segtree<ll, rangesum_op, rangesum_e, ll, range_add_map, range_add_comp, rangeadd_id>create_range_add_stv2(vl a) {return lazy_segtree<ll,rangesum_op,rangesum_e,ll,range_add_map,range_add_comp,rangeadd_id>(a);}class rolhash_lib {string s;vl v, p;ll n;public:rolhash_lib() {}rolhash_lib(string _s) : s(_s) {n = s.size();v.resize(n + 1);p.resize(n + 1);p[0] = 1;rep(i, n) {v[i + 1] = calc_mod_61(mul_61(v[i], INF) + s[i]);p[i + 1] = mul_61(p[i], INF);}}ll get_hash(ll l, ll r) {l--;return calc_mod_61(v[r] + MOD * 4 - mul_61(v[l], p[r - l]));}};template<class t>class zobhash_lib {vector<t> s;vul v, p;ll n;public:zobhash_lib() {}zobhash_lib(vector<t> _s, vector<t> vals) : s(_s) {n = s.size();v.resize(n + 1);p.resize(n + 1);p[0] = 1;map<t, ull> mp;ull q = INF;rep(i, vals.size()) {mp[vals[i]] = mul_61(vals[i], q);q = mul_61(q, INF);}rep(i, n) {v[i + 1] = calc_mod_61(v[i] + mp[s[i]]);}}ull get_hash(ll l, ll r) {l--;return calc_mod_61(v[r] + MOD * 4 - v[l]);}};long long llceil(long long a, long long b) {if (a % b == 0) { return a / b; }if (a >= 0) { return (a / b) + 1; }else { return -((-a) / b); }}long long llfloor(long long a, long long b) {if (a % b == 0) { return a / b; }if (a >= 0) { return (a / b); }else { return -((-a) / b) - 1; }}using pl = pair<long long, long long>;pl findseg(pl seg, long long ini, long long step) {if (step > 0) {return { llceil(seg.first - ini,step), llfloor(seg.second - ini,step) };}else {step *= -1;return { llceil(ini - seg.second,step), llfloor(ini - seg.first,step) };}}ll matsum(mat& a, ll i, ll j, ll x, ll y) {return a[i][j] - a[i - x][j] - a[i][j - y] + a[i - x][j - y];}ll __parity(ll t) {ll c = 0;while (t > 0){c += t & 1;t >>= 1;}return c % 2;}ll lcm(ll a, ll b) {return a * b / gcd(a, b);}ll popcount(ll x) {ll c = 0;while (x > 0){c += x & 1;x >>= 1;}return c;}struct centroid_decomposition {int n;int centor;mat G;vector<int>size;vector<vector<array<ll, 3>>>child; //child[i]=iが重心の木の、iを根としたときの子の(index,size,centoroid index)vector<bool>removed; //作業用centroid_decomposition(mat& g) {G = g;n = G.size();size.resize(n);child.resize(n);removed.resize(n);decompose();};int find_centroid(int v, int pre, int cnt) {// 残っている頂点でなす、vを含む連結成分における重心のindexを返す// early returnはせず、sizeの再計算を全部やるsize[v] = 1;bool ok = true;int centor = -1;for (auto vv : G[v]) {if (vv == pre)continue;if (removed[vv])continue;centor = max(centor, find_centroid(vv, v, cnt));size[v] += size[vv];ok &= size[vv] <= cnt / 2;}ok &= cnt - size[v] <= cnt / 2;return ok ? v : centor;}int decompose_recursive(int v, int cnt) {int vv = find_centroid(v, -1, cnt);removed[vv] = true;for (auto vvv : G[vv])if (!removed[vvv]) {int bbc = size[vvv] < size[vv] ? size[vvv] : cnt - size[vv];child[vv].push_back({ vvv,bbc,-1 });}for (auto& item : child[vv])item[2] = decompose_recursive(item[0], item[1]);return vv;}void decompose() {centor = decompose_recursive(0, n);}};template <typename T>vl argsort(const vector<T>& A) {// stablevl ids(A.size());iota(all(ids), 0);sort(all(ids),[&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });return ids;}// A[I[0]], A[I[1]], ...template <typename T>vector<T> rearrange(const vector<T>& A, const vl& I) {int n = A.size();vector<T> B(n);rep(i, n) B[i] = A[I[i]];return B;}bool intersection(ll f, ll t, ll ff, ll tt) {return !(tt <= f || t <= ff);}vpll calcMovementCostCircle(ll n, ll frm, ll to, ll ng) {vpll res;if (to != ng) {if (min(frm, to) < ng && ng < max(frm, to)) {res.emplace_back(n - abs(frm - to), ng);}else {res.emplace_back(abs(frm - to), ng);}}if (frm < ng) {if (to < frm || ng <= to) {res.emplace_back((to - frm + n) % n + (to - ng + n) % n + 1, (to + 1) % n);}if (frm < to && to <= ng) {res.emplace_back(n - (to - frm) + (ng - to) + 1, to - 1);}}else {if (ng <= to && to < frm) {res.emplace_back(n - (frm - to) + to - ng + 1, (to + 1) % n);}if (frm < to || to <= ng) {res.emplace_back((frm - to + n) % n + (ng - to + n) % n + 1, (to - 1 + n) % n);}}return res;}// ここまでライブラリ// ここからコードstruct C {ll a, mi;};struct O {ll l, r, q;};struct S {ll sz, val;};S op(S l, S r) {return { l.sz + r.sz,l.val + r.val };}S e() {return { 0,0 };}ll ore() {return 0;}S mapping(ll f, S s) {if (f == -1)return s;return { s.sz,f * s.sz };}ll mapma(ll v, ll x) {if (v < 0)return x;return v;}ll composition(ll ne, ll ol) {if (ne < 0)return ol;if (ol < 0)return ne;return ne;}ll id() {return -1;}ll opmin(ll l, ll r) {return min(l, r);}ll emin() {return big;}ll opma(ll l, ll r) {return max(l, r);}ll ema() {return -big;}ll mamapping(ll ne, ll o) {if (ne < 0)return o;return ne;}ll changeCom(ll ne, ll ol) {if (ne < 0)return ol;return ne;}ll changeee() {return -1;}ll oppp(ll l, ll r) {return max(l, r);}ll ee() {return -big;}modint998244353 o1(modint998244353 l, modint998244353 r) {return l + r;}modint998244353 e1() {return 0;}struct F {ll lz = 0, lo = 0, rz = 0, ro = 0, mz = 0, mo = 0, len = 0;};F ost(F l, F r) {if (l.len == -1)return r;if (r.len == -1)return l;ll lz = l.lz;ll lo = l.lo;ll rz = r.rz;ll ro = r.ro;if (rz == r.len) {rz += l.rz;}if (ro == r.len) {ro += l.ro;}if (lz == l.len) {lz += r.lz;}if (lo == l.len) {lo += r.lo;}ll sm = l.len + r.len;ll mo = max({ l.mo ,r.mo,l.ro + r.lo });ll mz = max({ l.mz,r.mz, l.rz + r.lz });return { lz,lo,rz,ro,mz,mo,sm };}F est() {return { -1,-1,-1,-1,-1,-1,-1 };}F maest(ll v, F s) {if (v % 2 == 0)return s;return { s.lo,s.lz,s.ro,s.rz,s.mo,s.mz,s.len };}vl o157(vl l, vl r) {if (l.empty())return r;if (r.empty())return l;rep(i, 26) {r[i] += l[i];}return r;}vl e157() {return {};}double ops(double l, double r) {return l + r;}double ope() {return 0;}pair<vl, vl> opx(pair<vl, vl> l, pair<vl, vl> r) {if (l.first.empty())return r;if (r.first.empty())return l;vl cn(26), tn(26);for (int i = 25; i >= 0; i--){cn[i] = l.first[i];if (i < 25) {cn[i] += cn[i + 1];if (r.first[i] > 0)r.second[i] += cn[i + 1];}r.second[i] += l.second[i];r.first[i] += l.first[i];}return r;}pair<vl, vl> epx() {return { {},{} };}char cnt[162000001];pll op299(pll l, pll r) {if (l.first == -1)return r;if (r.first == -1)return l;if (l.first < r.first)return l;if (l.first > r.first)return r;if (l.second < r.second)return l;return r;}pll e299() {return { -1,-1 };}pair<ull, ull> oprol(pair<ull, ull> l, pair<ull, ull> r) {pair<ull, ull> nx;nx.first = calc_mod_61(l.first + mul_61(r.first, l.second));nx.second = mul_61(l.second, r.second);return nx;}pair<ull, ull> erol() {return { 0,1 };}ll opa(ll l, ll r) {return l | r;};ll eaa() {return 0;}void solv() {/*私は素因数分解を使うべきところで、エラトステネスを使ってハマりました。私は「lからrまでを数としてみた時、7で割り切れるか?」を「lからrまでを数としてみた時、『各桁の和を』7で割り切れるか?」と誤解しました。私は累積和を使うべきところで、遅延セグ木を使ってTLEを食らいました。tをn進法にする時は素直にwhile(t>0)の条件で処理しよう問題を誤読すると痛いよ!愚直解テストはレンジの小さい範囲も入念に試しておきたい(https://atcoder.jp/contests/abc309/tasks/abc309_f)next_permutation使う時は基本的にはソートするんやm回接続(ループ)してその中を計算するタイプの問題、確定している分はしっかりmから引く事ARCでは特に、愚直解との比較で間違っている箇所は出来る限り出す中央値を使う総和の計算の左側は、カッコを忘れない事→x*lf-(s[i]-s[i-lf])lazy_segtreeは分解した式で考えるdouble の値を10^x倍して小数点四捨五入するときはroundlを使う*/cin >> n >> m;vl in(n), ou(n);dsu uf(n);rep(i, m) {ll u, v;cin >> u >> v;u--; v--;in[v]++;ou[u]++;uf.merge(u, v);}auto g = uf.groups();ll res = -1;for (auto v : g) {bool ex = false;ll sm = 0;for (auto e : v) {if (in[e] > 0)ex = true;sm += max(0LL, ou[e] - in[e]);}res += max(0LL, sm - 1) + ex;}pln(res);}int main(){cin.tie(0);ios::sync_with_stdio(false);INF = 998244353;solv();return 0;}