結果
問題 | No.703 ゴミ拾い Easy |
ユーザー | vwxyz |
提出日時 | 2024-11-20 17:49:06 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 16,487 bytes |
コンパイル時間 | 493 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 178,484 KB |
最終ジャッジ日時 | 2024-11-20 17:49:18 |
合計ジャッジ時間 | 11,032 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 24 RE * 22 |
ソースコード
import sys readline=sys.stdin.readline class AVLTree_dict: def __init__(self): self.root=None self.parent=[] self.key=[] self.value=[] self.left=[] self.right=[] self.bias=[] self.size=[] def Make_Node(self,parent,key,value): retu=len(self.parent) self.parent.append(parent) self.key.append(key) self.value.append(value) self.left.append(None) self.right.append(None) self.bias.append(0) self.size.append(1) return retu def Rotate_Left(self,node): node_right=self.right[node] self.size[node_right]-self.size[node] self.size[node]-=1 if node_right<len(self.righr) and self.right[node_right]!=None: self.size[node]-=self.size[self.right[node_right]] if self.bias[node_right]==-1: self.bias[node_right]=0 self.bias[node]=0 else: #assert node_right.bias==0 self.bias[node_right]=1 self.bias[node]=-1 self.right[node]=self.left[node_right] self.left[node_right]=node return node_right def Rotate_Right(self,node): node_left=self.left[node] self.size[node_left]=self.size[node] self.size[node]-=1 if node_left<len(self.left) and self.left[node_left]!=None: self.size[node]-=self.size[self.left[node_left]] if self.bias[node_left]==1: self.bias[node_left]=0 self.bias[node]=0 else: #assert node_left.bias==0 self.bias[node_left]=-1 self.bias[node_left]=-1 self.bias[node]=1 self.left[node]=self.right[node_left] self.right[node_left]=node return node_left def Rotate_Left_Right(self,node): node_left=self.left[node] node_left_right=self.right[node_left] #assert node.bias==2 #assert node_left.bias==-1 #assert node_left_right.bias in (-1,0,1) self.size[node_left_right]=self.size[node] self.size[node]-=self.size[node_left] if node_left_right<len(self.right) and self.right[node_left_right]!=None: self.size[node]+=self.size[self.right[node_left_right]] self.size[node_left]-=1 if node_left_right<len(self.right) and self.right[node_left_right]!=None: self.size[node_left]-=self.size[self.right[node_left_right]] self.right[node_left]=self.left[node_left_right] self.left[node_left_right]=node_left self.left[node]=self.right[node_left_right] self.right[node_left_right]=node self.Update_Bias_Double(node_left_right) return node_left_right def Rotate_Right_Left(self,node): node_right=self.right[node] node_right_left=self.left[node_right] #assert node.bias==-2 #assert node_right.bias==1 #assert node_right_left.bias in (-1,0,1) self.size[node_right_left]=self.size[node] self.size[node]-=self.size[node_right] if node_right_left<len(self.left) and self.left[node_right_left]!=None: self.size[node]+=self.size[self.left[node_right_left]] self.size[node_right]-=1 if node_right_left<len(self.left) and self.left[node_right_left]!=None: self.size[node_right]-=self.size[self.left[node_right_left]] self.left[node_right]=self.right[node_right_left] self.right[node_right_left]=node_right self.right[node]=self.left[node_right_left] self.left[node_right_left]=node self.Update_Bias_Double(node_right_left) return node_right_left def Update_Bias_Double(self,node): #assert node.right.bias*node.left.bias==-2 #assert node.right.bias>0 if self.bias[node]==1: self.bias[self.right[node]]=-1 self.bias[self.left[node]]=0 elif self.bias[node]==-1: self.bias[self.right[node]]=0 self.bias[self.left[node]]=1 else: self.bias[self.right[node]]=0 self.bias[self.left[node]]=0 self.bias[node]=0 def __getitem__(self,key): v=self.root while v!=None: if key<self.key[v]: v=self.left[v] elif self.key[v]<key: v=self.right[v] else: return self.value[v] return None def __setitem__(self,key,value): if self.root==None: self.root=self.Make_Node(None,key,value) return v=self.root stack=[] while v!=None: if key<self.key[v]: stack.append((v,1)) v=self.left[v] elif self.key[v]<key: stack.append((v,-1)) v=self.right[v] elif self.key[v]==key: self.value[v]=value return p,direction=stack[-1] if direction==1: self.left[p]=self.Make_Node(p,key,value) else: self.right[p]=self.Make_Node(p,key,value) while stack: v,direction=stack.pop() self.bias[v]+=direction self.size[v]+=1 vv=None if self.bias[v]==2: if self.bias[self.left[v]]==-1: vv=self.Rotate_Left_Right(v) else: vv=self.Rotate_Right(v) #assert vv!=None break if self.bias[v]==-2: if self.bias[self.right[v]]==1: vv=self.Rotate_Right_Left(v) else: vv=self.Rotate_Left(v) #assert vv!=None break if self.bias[v]==0: break if vv!=None: if len(stack)==0: self.root=vv return p,direction=stack.pop() self.size[p]+=1 if direction==1: self.left[p]=vv else: self.right[p]=vv while stack: p,direction=stack.pop() self.size[p]+=1 def __delitem__(self,key): v=self.root stack=[] while v!=None: if key<self.key[v]: stack.append((v,1)) v=self.left[v] elif self.key[v]<key: stack.append((v,-1)) v=self.right[v] else: break else: return False if v<len(self.left) and self.left[v]!=None: stack.append((v,1)) lmax=self.left[v] while lmax<len(self.right) and self.right[lmax]!=None: stack.append((lmax,-1)) lmax=self.right[lmax] self.key[v]=self.key[lmax] self.value[v]=self.value[lmax] v=lmax c=self.right[v] if self.left[v]==None else self.left[v] if stack: p,direction=stack[-1] if direction==1: self.left[p]=c else: self.right[p]=c else: self.root=c return True while stack: pp=None p,direction=stack.pop() self.bias[p]-=direction self.size[p]-=1 if self.bias[p]==2: if self.bias[self.left[p]]==-1: pp=self.Rotate_Left_Right(p) else: pp=self.Rotate_Right(p) elif self.bias[p]==-2: if self.bias[self.right[p]]==1: pp=self.Rotate_Right_Left(p) else: pp=self.Rotate_Left(p) elif self.bias[p]!=0: break if pp!=None: if len(stack)==0: self.root=pp return True p,direction=stack[-1] if direction==1: self.left[p]=pp else: self.right[p]=pp if self.bias[pp]!=0: break while stack: p,direction=stack.pop() self.size[p]-=1 return True def __contains__(self,key): v=self.root while v!=None: if key<self.key[v]: v=self.left[v] elif self.key[v]<key: v=self.right[v] else: return True return False def Bisect_Right(self,key): retu=None v=self.root while v!=None: if self.key[v]>key: if retu==None or retu[0]>self.key[v]: retu=(self.key[v],self.value[v]) v=self.left[v] else: v=self.right[v] return retu def Bisect_Left(self,key): retu=None v=self.root while v!=None: if self.key[v]<key: if retu==None or retu[0]<self.key[v]: retu=(self.key[v],self.value[v]) v=self.right[v] else: v=self.left[v] return retu def Find_Kth_Element(self,K): v=self.root s=0 while v!=None: t=s+self.size[self.left[v]] if v<len(self.left) and self.left[v]!=None else s if t==K: return self.key[v],self.value[v] elif t<K: s=t+1 v=self.right[v] else: v=self.left[v] return None def keys(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node<len(self.right) and self.right[node]!=None: stack.append((self.right[node],True)) stack.append((node,False)) if node<len(self.left) and self.left[node]!=None: stack.append((self.left[node],True)) else: yield self.key[node] def values(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node<len(self.right) and self.right[node]!=None: stack.append((self.right[node],True)) stack.append((node,False)) if node<len(self.left) and self.left[node]!=None: stack.append((self.left[node],True)) else: yield self.value[node] def items(self): stack=[(self.root,True)] while stack: node,subtree=stack.pop() if subtree: if node<len(self.right) and self.right[node]!=None: stack.append((self.right[node],True)) stack.append((node,False)) if node<len(self.left) and self.left[node]!=None: stack.append((self.left[node],True)) else: yield (self.key[node],self.value[node]) def __bool__(self): return self.root!=None def __len__(self): return 0 if self.root==None else self.size[self.root] def __iter__(self): return iter(self.keys()) def __str__(self): if self.root==None: retu="{}" else: retu="{"+", ".join(f"{r}: {m}" for r,m in self.items())+"}" return retu class Convex_Hull_Trick: def __init__(self,avl=False): self.avl=avl if self.avl: self.lines=AVLTree_dict() else: self.lines_A=SortedSet() self.lines_B={} def is_removed(self,line0,line1,line2): if line0==None: return False if line2==None: return False a0,b0=line0 a1,b1=line1 a2,b2=line2 return (a1-a0)*(b2-b1)<=(b1-b0)*(a2-a1) def add_line(self,a,b): if self.avl: bb=self.lines[a] else: if a in self.lines_B: bb=self.lines_B[a] else: bb=None if bb!=None and bb<=b: return if self.avl: line0=self.lines.Bisect_Left(a) else: aa=self.lines_A.lt(a) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) line1=(a,b) if self.avl: line2=self.lines.Bisect_Right(a) else: aa=self.lines_A.gt(a) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) if self.is_removed(line0,line1,line2): return if self.avl: self.lines[a]=b else: self.lines_A.add(a) self.lines_B[a]=b line2=(a,b) if self.avl: line1=self.lines.Bisect_Left(line2[0]) line0=None if line1==None else self.lines.Bisect_Left(line1[0]) else: aa=self.lines_A.lt(line2[0]) if aa==None: line1=None else: line1=(aa,self.lines_B[aa]) if line1==None: line0=None else: aa=self.lines_A.lt(line1[0]) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) while self.is_removed(line0,line1,line2): if self.avl: del self.lines[line1[0]] else: assert self.lines_A.discard(line1[0]) del self.lines_B[line1[0]] line1=line0 if self.avl: line0=None if line1==None else self.lines.Bisect_Left(line1[0]) else: aa=self.lines_A.lt(line1[0]) if aa==None: line0=None else: line0=(aa,self.lines_B[aa]) line0=(a,b) if self.avl: line1=self.lines.Bisect_Right(line0[0]) line2=None if line1==None else self.lines.Bisect_Right(line1[0]) else: aa=self.lines_A.gt(line0[0]) if aa==None: line1=None else: line1=(aa,self.lines_B[aa]) if line1==None: line2=None else: aa=self.lines_A.gt(line1[0]) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) while self.is_removed(line0,line1,line2): if self.avl: del self.lines[line1[0]] else: assert self.lines_A.discard(line1[0]) del self.lines_B[line1[0]] line1=line2 if self.avl: line2=None if line1==None else self.lines.Bisect_Right(line1[0]) else: aa=self.lines_A.gt(line1[0]) if aa==None: line2=None else: line2=(aa,self.lines_B[aa]) def __call__(self,x): if self.avl: size=len(self.lines) else: size=len(self.lines_A) if not size: return None ok,ng=-1,size-1 while ng-ok>1: mid=(ok+ng)//2 if self.avl: a0,b0=self.lines.Find_Kth_Element(mid) a1,b1=self.lines.Find_Kth_Element(mid+1) else: a0=self.lines_A[mid] b0=self.lines_B[a0] a1=self.lines_A[mid+1] b1=self.lines_B[a1] if a0*x+b0>a1*x+b1: ok=mid else: ng=mid if self.avl: a,b=self.lines.Find_Kth_Element(ok+1) else: a=self.lines_A[ok+1] b=self.lines_B[a] return a*x+b def __getitem__(self,a): if self.avl: return self.lines[a] else: if a in self.lines_A: return self.lines_B[a] else: return None def __setitem__(self,a,b): self.add_line(a,b) N=int(readline()) A=list(map(int,readline().split())) X=list(map(int,readline().split())) Y=list(map(int,readline().split())) dp=Convex_Hull_Trick(avl=True) cost=0 for i in range(N): dp.add_line(-2*X[i],cost+X[i]**2+Y[i]**2) cost=dp(A[i])+A[i]**2 ans=cost print(ans)