結果

問題 No.2952 Invision of Multiples
ユーザー apricityapricity
提出日時 2024-11-24 15:45:55
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 858 ms / 4,000 ms
コード長 8,753 bytes
コンパイル時間 1,604 ms
コンパイル使用メモリ 143,060 KB
実行使用メモリ 91,912 KB
最終ジャッジ日時 2024-11-24 15:46:13
合計ジャッジ時間 17,211 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
46,688 KB
testcase_01 AC 10 ms
46,684 KB
testcase_02 AC 28 ms
49,252 KB
testcase_03 AC 18 ms
49,648 KB
testcase_04 AC 18 ms
47,732 KB
testcase_05 AC 16 ms
47,468 KB
testcase_06 AC 16 ms
47,468 KB
testcase_07 AC 13 ms
49,172 KB
testcase_08 AC 13 ms
49,164 KB
testcase_09 AC 389 ms
74,512 KB
testcase_10 AC 403 ms
72,568 KB
testcase_11 AC 83 ms
90,876 KB
testcase_12 AC 76 ms
90,600 KB
testcase_13 AC 95 ms
72,416 KB
testcase_14 AC 116 ms
90,840 KB
testcase_15 AC 595 ms
91,776 KB
testcase_16 AC 538 ms
91,884 KB
testcase_17 AC 603 ms
91,844 KB
testcase_18 AC 584 ms
91,808 KB
testcase_19 AC 118 ms
91,324 KB
testcase_20 AC 125 ms
90,788 KB
testcase_21 AC 655 ms
91,804 KB
testcase_22 AC 642 ms
91,800 KB
testcase_23 AC 728 ms
91,836 KB
testcase_24 AC 576 ms
91,892 KB
testcase_25 AC 625 ms
91,896 KB
testcase_26 AC 703 ms
91,912 KB
testcase_27 AC 842 ms
91,812 KB
testcase_28 AC 816 ms
91,804 KB
testcase_29 AC 858 ms
91,792 KB
testcase_30 AC 835 ms
91,832 KB
testcase_31 AC 857 ms
91,840 KB
testcase_32 AC 851 ms
91,748 KB
testcase_33 AC 91 ms
91,132 KB
testcase_34 AC 93 ms
90,836 KB
testcase_35 AC 94 ms
90,988 KB
testcase_36 AC 173 ms
90,832 KB
testcase_37 AC 152 ms
91,492 KB
testcase_38 AC 152 ms
90,740 KB
testcase_39 AC 124 ms
90,844 KB
testcase_40 AC 136 ms
90,820 KB
testcase_41 AC 123 ms
90,980 KB
testcase_42 AC 126 ms
90,644 KB
testcase_43 AC 124 ms
91,268 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>

#ifdef LOCAL
#  include "debug_print.hpp"
#  define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#  define debug(...) (static_cast<void>(0))
#endif

using namespace std;
#define rep1(a)          for(int i = 0; i < a; i++)
#define rep2(i, a)       for(int i = 0; i < a; i++)
#define rep3(i, a, b)    for(int i = a; i < b; i++)
#define rep4(i, a, b, c) for(int i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a)          for(int i = (a)-1; i >= 0; i--)
#define rrep2(i, a)       for(int i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b)    for(int i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(int i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define pb push_back
using ll = long long;
using D = double;
using LD = long double;
using P = pair<int, int>;
using vi = vector<int>;
using vl = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
void yesno(bool flag) {cout << (flag?"Yes":"No") << "\n";}

template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << p.first << " " << p.second;
    return os;
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
    is >> p.first >> p.second;
    return is;
}

template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &v) {
    for (auto &x : v) is >> x;
    return is;
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
    cin >> t;
    in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
    cout << t;
    outr(u...);
}

template <uint32_t mod>
struct LazyMontgomeryModInt {
    using mint = LazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static constexpr u32 get_r() {
        u32 ret = mod;
        for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static constexpr u32 r = get_r();
    static constexpr u32 n2 = -u64(mod) % mod;
    static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
    static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
    static_assert(r * mod == 1, "this code has bugs.");

    u32 a;

    constexpr LazyMontgomeryModInt() : a(0) {}
    constexpr LazyMontgomeryModInt(const int64_t &b)
    : a(reduce(u64(b % mod + mod) * n2)){};

    static constexpr u32 reduce(const u64 &b) {
        return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
    }

    constexpr mint &operator+=(const mint &b) {
        if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator-=(const mint &b) {
        if (i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator*=(const mint &b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    constexpr mint &operator/=(const mint &b) {
        *this *= b.inverse();
        return *this;
    }

    constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
    constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
    constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
    constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
    constexpr bool operator==(const mint &b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr bool operator!=(const mint &b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr mint operator-() const { return mint() - mint(*this); }
    constexpr mint operator+() const { return mint(*this); }

    constexpr mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    constexpr mint inverse() const {
        int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
        while (y > 0) {
            t = x / y;
            x -= t * y, u -= t * v;
            tmp = x, x = y, y = tmp;
            tmp = u, u = v, v = tmp;
        }
        return mint{u};
    }

    friend ostream &operator<<(ostream &os, const mint &b) {
        return os << b.get();
    }

    friend istream &operator>>(istream &is, mint &b) {
        int64_t t;
        is >> t;
        b = LazyMontgomeryModInt<mod>(t);
        return (is);
    }

    constexpr u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static constexpr u32 get_mod() { return mod; }
};
const int mod = 998244353;
//const int mod = 1000000007;
using mint = LazyMontgomeryModInt<mod>;

/*
* dual segtree
* range apply / point get
* operator (com) must be commutative:
*   f g = g f
* ex) range add, chmax/chmin, (apply)
* https://hackmd.io/@tatyam-prime/DualSegmentTree
*/
template< class T, T (*id)(), void(*com)(T&, const T&) >
struct DualSegmentTree {
    int sz;
    vector< T > dat;
    DualSegmentTree(int n){
        sz = 1;
        while(sz < n) sz <<= 1;
        dat.assign(2*sz, id());
    }

    void apply(int l, int r, const T &t){
        l += sz; r += sz;
        for(;l<r;l>>=1,r>>=1){
            if(l&1) com(dat[l++], t);
            if(r&1) com(dat[--r], t);
        }
    }

    T get(int i) const{
        T res = id();
        i += sz;
        for(;i;i>>=1){
            com(res, dat[i]);
        }
        return res;
    }
};

using T = mint;
T id() {return 0;}
void com(T &a, const T &b) {a += b;}

#include "atcoder/math.hpp"

constexpr int MX = 50005;
constexpr int B = 224;
int f1[B][MX]; // f1[x][y] = #(i<j) di=x, dj=y
int f2[MX][B];
DualSegmentTree<T,id, com> g(MX);

int main(){
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int n,m; in(n,m);
    vector<int> d(n); in(d);
    vector<mint> im(m+1);
    rep(i,1,m+1) im[i] = mint(m/i).inverse();

    vector<int> cntd(m+1);
    rep(i,n) {
        rep(j,B) f1[j][d[i]] += cntd[j];
        cntd[d[i]]++;
    }
    cntd.assign(m+1,0);
    rrep(i,n){
        rep(j,B) f2[d[i]][j] += cntd[j];
        cntd[d[i]]++;
    }

    mint ans = 0;
    rep(x,1,B) rep(y,1,m+1) if(f1[x][y]) {
        ans += im[x] * im[y] * f1[x][y] * atcoder::floor_sum(m/x, y, x, x-1);
    }
    rep(x,B,m+1) rep(y,1,B) if(f2[x][y]) {
        ans += im[x] * im[y] * f2[x][y] * atcoder::floor_sum(m/x, y, x, x-1);
    }

    rrep(i,n) if(d[i] >= B) {
        mint tmp = 0;
        rep(l,1,m/d[i]+1) tmp += g.get(l*d[i]-1);
        ans += tmp * im[d[i]];
        rep(t,1,m/d[i]+1) {
            int l = t*d[i], r = min(m,(t+1)*d[i]-1) + 1;
            g.apply(l,r,im[d[i]]*t);
        }
    }

    rep(i,n) ans *= m/d[i];
    out(ans);
}
0