結果

問題 No.1431 東大文系数学2020第2問改
ユーザー apricityapricity
提出日時 2024-11-25 16:10:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 643 ms / 5,000 ms
コード長 13,232 bytes
コンパイル時間 1,548 ms
コンパイル使用メモリ 138,328 KB
実行使用メモリ 120,556 KB
最終ジャッジ日時 2024-11-25 16:10:47
合計ジャッジ時間 16,517 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 260 ms
120,444 KB
testcase_01 AC 269 ms
120,280 KB
testcase_02 AC 246 ms
120,480 KB
testcase_03 AC 584 ms
120,504 KB
testcase_04 AC 240 ms
120,468 KB
testcase_05 AC 603 ms
120,456 KB
testcase_06 AC 597 ms
120,328 KB
testcase_07 AC 632 ms
120,456 KB
testcase_08 AC 643 ms
120,332 KB
testcase_09 AC 613 ms
120,432 KB
testcase_10 AC 539 ms
120,352 KB
testcase_11 AC 549 ms
120,320 KB
testcase_12 AC 543 ms
120,556 KB
testcase_13 AC 532 ms
120,444 KB
testcase_14 AC 508 ms
120,432 KB
testcase_15 AC 521 ms
120,496 KB
testcase_16 AC 496 ms
120,464 KB
testcase_17 AC 481 ms
120,488 KB
testcase_18 AC 519 ms
120,484 KB
testcase_19 AC 622 ms
120,472 KB
testcase_20 AC 524 ms
120,472 KB
testcase_21 AC 571 ms
120,508 KB
testcase_22 AC 412 ms
120,424 KB
testcase_23 AC 621 ms
120,320 KB
testcase_24 AC 616 ms
120,320 KB
testcase_25 AC 234 ms
120,376 KB
testcase_26 AC 235 ms
120,392 KB
testcase_27 AC 229 ms
120,432 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>

#ifdef LOCAL
#  include "debug_print.hpp"
#  define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#  define debug(...) (static_cast<void>(0))
#endif

using namespace std;

template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << p.first << " " << p.second;
    return os;
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
    is >> p.first >> p.second;
    return is;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &v) {
    for (auto &x : v) is >> x;
    return is;
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
    cin >> t;
    in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
    cout << t;
    outr(u...);
}

using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;

#define rep1(a)          for(ll i = 0; i < a; i++)
#define rep2(i, a)       for(ll i = 0; i < a; i++)
#define rep3(i, a, b)    for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a)          for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a)       for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b)    for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
    T res = 0;
    for(auto &&a : v) res += a;
    return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
    if (v.empty()) return {};
    T cur = v.front();
    int cnt = 1;
    vector<pair<T,int>> res;
    for (int i = 1; i < (int)v.size(); i++) {
        if (cur == v[i]) cnt++;
        else {
            res.emplace_back(cur, cnt);
            cnt = 1; cur = v[i];
        }
    }
    res.emplace_back(cur, cnt);
    return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }

template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
    if (check_ok) assert(check(ok));
    while (abs(ok -  ng) > 1) {
        ll mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <typename F>
ll binary_search_real(F check, double ok, double ng, int iter = 60) {
    for (int _ = 0; _ < iter; _++) {
        double mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return (ok + ng) / 2;
}

// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
    assert(b > 0);
    ll c = a % b;
    return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
    ll q = div_floor(a,b);
    return {q, a - b*q};
}

template <uint32_t mod>
struct LazyMontgomeryModInt {
    using mint = LazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static constexpr u32 get_r() {
        u32 ret = mod;
        for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static constexpr u32 r = get_r();
    static constexpr u32 n2 = -u64(mod) % mod;
    static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
    static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
    static_assert(r * mod == 1, "this code has bugs.");

    u32 a;

    constexpr LazyMontgomeryModInt() : a(0) {}
    constexpr LazyMontgomeryModInt(const int64_t &b)
    : a(reduce(u64(b % mod + mod) * n2)){};

    static constexpr u32 reduce(const u64 &b) {
        return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
    }

    constexpr mint &operator+=(const mint &b) {
        if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator-=(const mint &b) {
        if (i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator*=(const mint &b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    constexpr mint &operator/=(const mint &b) {
        *this *= b.inverse();
        return *this;
    }

    constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
    constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
    constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
    constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
    constexpr bool operator==(const mint &b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr bool operator!=(const mint &b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr mint operator-() const { return mint() - mint(*this); }
    constexpr mint operator+() const { return mint(*this); }

    constexpr mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    constexpr mint inverse() const {
        int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
        while (y > 0) {
            t = x / y;
            x -= t * y, u -= t * v;
            tmp = x, x = y, y = tmp;
            tmp = u, u = v, v = tmp;
        }
        return mint{u};
    }

    friend ostream &operator<<(ostream &os, const mint &b) {
        return os << b.get();
    }

    friend istream &operator>>(istream &is, mint &b) {
        int64_t t;
        is >> t;
        b = LazyMontgomeryModInt<mod>(t);
        return (is);
    }

    constexpr u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static constexpr u32 get_mod() { return mod; }
};

template<typename T> struct Binomial {
    vector<T> fact_, inv_, finv_;
    constexpr Binomial() {}
    constexpr Binomial(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
        init(n);
    }
    constexpr void init(int n) noexcept {
        constexpr int mod = T::get_mod();
        fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
        for(int i = 2; i < n; i++){
            fact_[i] = fact_[i-1] * i;
            inv_[i] = -inv_[mod%i] * (mod/i);
            finv_[i] = finv_[i-1] * inv_[i];
        }
    }
    constexpr T com(int n, int k) const noexcept {
        if (n < k || n < 0 || k < 0) return 0;
        return fact_[n] * finv_[k] * finv_[n-k];
    }
    constexpr T perm(int n, int k) const noexcept {
        if (n < k || n < 0 || k < 0) return 0;
        return fact_[n] * finv_[n-k];
    }
    constexpr T fact(int n) const noexcept {
        if (n < 0) return 0;
        return fact_[n];
    }
    constexpr T inv(int n) const noexcept {
        if (n < 0) return 0;
        return inv_[n];
    }
    constexpr T finv(int n) const noexcept {
        if (n < 0) return 0;
        return finv_[n];
    }
    constexpr T com_naive(int n, int k) const noexcept {
        if (n < 0 || k < 0 || n < k) return 0;
        T res = T(1);
        k = min(k, n-k);
        for (int i = 1; i <= k; i++)res *= (n--) * inv(i);
        return res;
    }
    template <typename I>
    constexpr T multi(const vector<I> &v) const noexcept {
        static_assert(is_integral<I>::value);
        I n = 0;
        for (auto& x : v) {
            if (x < 0) return 0;
            n += x;
        }
        T res = fact(n);
        for (auto &x : v) res *= finv(x);
        return res;
    }
    // [x^k] (1-x)^{-n} = com(n+k-1, k)
    constexpr T neg(int n, int k) const noexcept {
        if (n < 0 || k < 0) return 0;
        return k == 0 ? 1 : com(n+k-1, k);
    }
};
const int mod = 998244353;
//const int mod = 1000000007;
using mint = LazyMontgomeryModInt<mod>;
Binomial<mint> bc(10000000);

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int n,m,k; in(n,m,k);
    vector<mint> f(n*2+1);
    rep(i,n*2+1){
        rep(a,i+1){
            int b = i-a;
            f[i] += bc.com(n,a) * bc.com(n,b) * bc.com((n-a)*(n-b),m);
        }
    }
    vector<mint> a(n*2+1), b(n*2+1); b[k] = 1;
    rep(i,n*2+1) rep(j,i+1) a[i] += b[j] * bc.com(i,j) * ((i-j)%2 ? -1:1);
    mint ans = 0;
    rep(i,n*2+1) ans += f[i]*a[i];
    out(ans);
}
0