結果
問題 | No.2979 直角三角形の個数 |
ユーザー | NyaanNyaan |
提出日時 | 2024-12-03 01:13:28 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 16,261 bytes |
コンパイル時間 | 3,060 ms |
コンパイル使用メモリ | 268,616 KB |
実行使用メモリ | 18,684 KB |
最終ジャッジ日時 | 2024-12-03 01:13:57 |
合計ジャッジ時間 | 27,961 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,640 KB |
testcase_01 | AC | 2 ms
13,636 KB |
testcase_02 | AC | 2 ms
17,380 KB |
testcase_03 | AC | 2 ms
13,636 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 3 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 5 ms
6,820 KB |
testcase_13 | AC | 4 ms
6,820 KB |
testcase_14 | AC | 22 ms
6,820 KB |
testcase_15 | AC | 22 ms
6,820 KB |
testcase_16 | AC | 74 ms
6,816 KB |
testcase_17 | AC | 195 ms
6,820 KB |
testcase_18 | AC | 625 ms
6,816 KB |
testcase_19 | AC | 869 ms
6,824 KB |
testcase_20 | AC | 2,768 ms
6,816 KB |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | AC | 2 ms
6,816 KB |
testcase_25 | AC | 2 ms
6,820 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 10 ms
6,820 KB |
testcase_28 | TLE | - |
ソースコード
// 埋め込まずに通そうとしたけど O(N^{3/4}) から落ちません。助けて! /** * date : 2024-12-03 01:12:50 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tr2/dynamic_bitset> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> constexpr P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(T &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template <typename T> vector<vector<T>> product(const vector<T> &a) { vector<vector<T>> ret; vector<T> v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I, const function<void(T &)> &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function<void(T &)>{[](T &) -> void {}}); } template <typename T> T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template <typename T> vector<T> Transpose(const vector<T> &v) { using U = typename T::value_type; if(v.empty()) return {}; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template <typename T> vector<T> Rotate(const vector<T> &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return __builtin_popcountll(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanLocal #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // using namespace std; // floor(sqrt(n)) を返す (ただし n が負の場合は 0 を返す) long long isqrt(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } namespace EnumerateQuotientImpl { long long fast_div(long long a, long long b) { return 1.0 * a / b; }; long long slow_div(long long a, long long b) { return a / b; }; } // namespace EnumerateQuotientImpl // { (q, l, r) : forall x in (l,r], floor(N/x) = q } // を引数に取る関数f(q, l, r)を渡す。範囲が左に半開なのに注意 // 商は小さい方から走査する template <typename T, typename F> void enumerate_quotient(T N, const F& f) { T sq = isqrt(N); #define FUNC(d) \ T upper = N, quo = 0; \ while (upper > sq) { \ T thres = d(N, (++quo + 1)); \ f(quo, thres, upper); \ upper = thres; \ } \ while (upper > 0) { \ f(d(N, upper), upper - 1, upper); \ upper--; \ } if (N <= 1e12) { FUNC(EnumerateQuotientImpl::fast_div); } else { FUNC(EnumerateQuotientImpl::slow_div); } #undef FUNC } /** * @brief 商の列挙 */ // Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...} vector<int> prime_enumerate(int N) { vector<bool> sieve(N / 3 + 1, 1); for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) { if (!sieve[i]) continue; for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p, qe = sieve.size(); q < qe; q += r = s - r) sieve[q] = 0; } vector<int> ret{2, 3}; for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++) if (sieve[i]) ret.push_back(p); while (!ret.empty() && ret.back() > N) ret.pop_back(); return ret; } // f(n, p, c) : n = pow(p, c), f is multiplicative function template <typename T, T (*f)(int, int, int)> struct enamurate_multiplicative_function { enamurate_multiplicative_function(int _n) : ps(prime_enumerate(_n)), a(_n + 1, T()), n(_n), p(ps.size()) {} vector<T> run() { a[1] = 1; dfs(-1, 1, 1); return a; } private: vector<int> ps; vector<T> a; int n, p; void dfs(int i, long long x, T y) { a[x] = y; if (y == T()) return; for (int j = i + 1; j < p; j++) { long long nx = x * ps[j]; long long dx = ps[j]; if (nx > n) break; for (int c = 1; nx <= n; nx *= ps[j], dx *= ps[j], ++c) { dfs(j, nx, y * f(dx, ps[j], c)); } } } }; /** * @brief 乗法的関数の列挙 */ namespace multiplicative_function { template <typename T> T moebius(int, int, int c) { return c == 0 ? 1 : c == 1 ? -1 : 0; } template <typename T> T sigma0(int, int, int c) { return c + 1; } template <typename T> T sigma1(int n, int p, int) { return (n - 1) / (p - 1) + n; } template <typename T> T totient(int n, int p, int) { return n - n / p; } } // namespace multiplicative_function template <typename T> static constexpr vector<T> mobius_function(int n) { enamurate_multiplicative_function<T, multiplicative_function::moebius<T>> em( n); return em.run(); } template <typename T> static constexpr vector<T> sigma0(int n) { enamurate_multiplicative_function<T, multiplicative_function::sigma0<T>> em( n); return em.run(); } template <typename T> static constexpr vector<T> sigma1(int n) { enamurate_multiplicative_function<T, multiplicative_function::sigma1<T>> em( n); return em.run(); } template <typename T> static constexpr vector<T> totient(int n) { enamurate_multiplicative_function<T, multiplicative_function::totient<T>> em( n); return em.run(); } /** * @brief 有名な乗法的関数 * @docs docs/multiplicative-function/mf-famous-series.md */ using namespace Nyaan; ll naive(ll N) { ll ans = 0; rep1(m, N) rep1(n, m - 1) { ll s = m * (m + n) * 2; if (s > N) break; if (gcd(m, n) != 1) continue; ans += N / s; } return ans; } // 1 + 2 + ... + x ll C2(ll x) { return x * (x + 1) / 2; } ll calc(ll N) { N /= 2; ll sq = sqrt(N) + 3; vi mo = mobius_function<int>(sq); vl v(sq); static map<ll, ll> mp; auto f = [&](ll x) { if (mp.count(x)) return mp[x]; ll s = 0; enumerate_quotient(x, [&](ll z, ll L, ll R) { // z, m in (L, R] enumerate_quotient(z, [&](ll q, ll l, ll r) { ll ml = max(L + 1, l / 2 + 1); ll mr = min(r, R) + 1; if (ml < mr) { ll t = 0; // -sum_{ml <= m < mr} max(l, m) ll p = clamp(l, ml, mr); // [ml, p) は l, [p, mr) は m t -= (p - ml) * l; t -= C2(mr - 1) - C2(p - 1); // sum_{ml <= m < mr} min(r, 2m-1) p = clamp(r / 2 + 1, ml, mr); // [ml, p) は 2m-1, [p, mr) は r t += (C2(p - 1) - C2(ml - 1)) * 2 - (p - ml); t += (mr - p) * r; s += q * t; } }); }); return mp[x] = s; }; rep1(i, sq - 1) { ll x = N / (i * i); if (x == 0) break; v[i] = f(x); } ll ans = 0; rep(i, sq) ans += v[i] * mo[i]; return ans; } void q() { inl(N); ll ans = 0, sgn = 1; while (N) ans += calc(N) * sgn, sgn = -sgn, N /= 2; out(ans); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }