結果
問題 | No.2979 直角三角形の個数 |
ユーザー |
👑 ![]() |
提出日時 | 2024-12-03 06:36:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,711 ms / 4,000 ms |
コード長 | 5,497 bytes |
コンパイル時間 | 1,332 ms |
コンパイル使用メモリ | 104,644 KB |
最終ジャッジ日時 | 2025-02-26 10:44:58 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 |
ソースコード
#ifdef NACHIA#define _GLIBCXX_DEBUG#else#define NDEBUG#endif#include <iostream>#include <string>#include <vector>#include <algorithm>using i64 = long long;using u64 = unsigned long long;#define rep(i,n) for(int i=0; i<int(n); i++)const i64 INF = 1001001001001001001;template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }using namespace std;#include <atcoder/modint>using Modint = atcoder::static_modint<998244353>;#include <cmath>#include <cassert>namespace nachia{namespace internal{// mod 2^64constexpr unsigned long long PowerOfULongLong(unsigned long long a, unsigned long long i){unsigned long long res = 1;while(i){ if(i&1){ res *= a; } i /= 2; a *= a; }return res;}}unsigned long long FloorOfKthRoot(unsigned long long real, unsigned long long k){using u64 = unsigned long long;assert(k != 0);if(real <= 1) return real;if(k >= 64) return 1;if(k == 1) return real;struct Precalc{// a^i <= xstatic constexpr bool lesseq(u64 a, int i, u64 x) {if (a == 0) return true;for(int j=0; j<i; j++) x /= a;return x >= 1;}unsigned long long BORDER[64];constexpr Precalc() : BORDER() {for (int idx = 2; idx <= 63; idx++) {u64 l = 0, r = 1ull << 33;while (l + 1 < r) {u64 m = (l + r) / 2;if (lesseq(m, idx, ~0ull)) l = m;else r = m;}BORDER[idx] = r;}};};constexpr Precalc precalc;u64 l = 0, r = precalc.BORDER[k];if(real < r) r = real;while (l + 1 < r) {u64 m = (l + r) / 2;if(internal::PowerOfULongLong(m, k) <= real) l = m;else r = m;}return l;}unsigned long long CeilOfKthRoot(unsigned long long real, unsigned long long k){if(real <= 1) return real;if(k >= 64) return 2;if(k == 1) return real;unsigned long long x = FloorOfKthRoot(real, k);if(internal::PowerOfULongLong(x, k) != real) x++;return x;}} // namespace nachianamespace nachia{long long CountSquarefree(long long n){using i64 = long long;i64 s = 0;auto getMobius = [&](i64 n){std::vector<bool> sieve(n+1, true);std::vector<signed char> mu(n+1, 1);for(i64 i=2; i<=n; i++) if(sieve[i]){mu[i] = -1;for(i64 j=i*i; j<=n; j+=i) sieve[j] = false;for(i64 j=i*2; j<=n; j+=i) mu[j] = -mu[j];for(i64 j=i*i; j<=n; j+=i*i) mu[j] = 0;}return mu;};if(n <= 4000){auto mu = getMobius(n+1);for(i64 i=1; i*i<=n; i++) s += n/(i*i) * mu[i];return s;}i64 I = nachia::FloorOfKthRoot(n, 5);i64 D = nachia::FloorOfKthRoot(n/(I+1), 2);auto mu = getMobius(D+1);std::vector<int> Mf(D+1);for(i64 i=1; i<=D; i++) Mf[i] = Mf[i-1] + mu[i];std::vector<i64> Md(I+1);for(i64 i=I; i>=1; i--){i64 m = 1;i64 x = nachia::FloorOfKthRoot(n/i, 2);i64 Dx = nachia::FloorOfKthRoot(x, 2);i64 Rx = x / (Dx+1);i64 r = 2;for( ; i*r*r<=I; r++) m -= Md[i*r*r];for( ; r<=Rx; r++) m -= Mf[x/r];for(i64 d=1; d<=Dx; d++) m -= mu[d] * (x/d - Rx);Md[i] = m; s += m;}for(i64 i=1; i<=D; i++) s += mu[i] * (n/(i*i) - I);return s;}} // namespace nachiavoid testcase(){i64 N; cin >> N;N /= 2;if(N < 6){cout << "0\n"; return;}i64 R = 0;for(i64 d=1ll<<20; d>=1; d>>=1) if((R+d)*(R+d) <= N) R += d;i64 L = R;i64 sqfree_border = min<i64>(R, 30000);vector<i64> Sqfree(sqfree_border + 1);for(i64 i=1; i<=sqfree_border; i++) Sqfree[i] = nachia::CountSquarefree(N/i);vector<i64> sqfree(N / sqfree_border + 1, 0);for(i64 i=1; i*sqfree_border<=N; i+=2) sqfree[i] += 1;for(i64 p=2; p*p<=N/sqfree_border; p++) if(sqfree[p*p]){for(i64 q=1; p*p*q<=N/sqfree_border; q++) sqfree[p*p*q] = 0;}for(i64 i=1; i<i64(sqfree.size()); i++) sqfree[i] += sqfree[i-1];auto sqfree_access = [&](i64 n){if(n <= sqfree_border) return Sqfree[n];return sqfree[N/n];};for(i64 i=sqfree_border; i>=1; i--) Sqfree[i] -= sqfree_access(i*2);if(N <= 5000000){vector<i64> A(N+1);for(i64 n=1; n*n<=N; n++){for(i64 m=1; m<n && n*(n+m)<=N; m++){A[n*(n+m)] += 1;}}i64 ans = 0;for(i64 i=1; i<=N; i++) ans += sqfree_access(i) * A[i];cout << ans << endl;}else{i64 Q = min<i64>(R, 10000);i64 P = N / Q;i64 ans = 0;for(i64 n=1; n*n<=P; n++){for(i64 m=1; m<n && n*(n+m)<=P; m++){ans += sqfree_access(n*(n+m));}}vector<i64> Q2(Q+1);for(i64 q=1; q<=Q; q++){i64 p = N / q;while(R*R > p) R--;while(L*L*2 > p) L--;i64 f = L * (L - 1) / 2;for(i64 i=L+1; i<=R; i++) f += p / i - i;Q2[q] = f;}for(i64 q=1; q<Q; q++) ans += sqfree_access(N/q) * (Q2[q] - Q2[q+1]);cout << ans << endl;}}int main(){ios::sync_with_stdio(false); cin.tie(nullptr);testcase();return 0;}