結果

問題 No.2980 Planar Tree 2
ユーザー apricity
提出日時 2024-12-04 03:54:23
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 153 ms / 2,000 ms
コード長 14,720 bytes
コンパイル時間 1,779 ms
コンパイル使用メモリ 144,192 KB
実行使用メモリ 25,216 KB
最終ジャッジ日時 2024-12-04 03:54:30
合計ジャッジ時間 6,115 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>
#ifdef LOCAL
# include "debug_print.hpp"
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
using namespace std;
namespace io {
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
template <typename T, size_t N = 0>
istream &operator>>(istream &is, array<T, N> &v) {
for (auto &x : v) is >> x;
return is;
}
template <size_t N = 0, typename T>
istream& cin_tuple_impl(istream &is, T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
is >> x;
cin_tuple_impl<N + 1>(is, t);
}
return is;
}
template <class... T>
istream &operator>>(istream &is, tuple<T...> &t) {
return cin_tuple_impl(is, t);
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template<typename T, size_t N>
ostream &operator<<(ostream &os, const array<T, N> &v) {
size_t n = v.size();
for (size_t i = 0; i < n; i++) {
if (i) os << " ";
os << v[i];
}
return os;
}
template <size_t N = 0, typename T>
ostream& cout_tuple_impl(ostream &os, const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) os << " ";
const auto &x = std::get<N>(t);
os << x;
cout_tuple_impl<N + 1>(os, t);
}
return os;
}
template <class... T>
ostream &operator<<(ostream &os, const tuple<T...> &t) {
return cout_tuple_impl(os, t);
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
cout << t;
outr(u...);
}
void __attribute__((constructor)) _c() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} // namespace io
using io::in;
using io::out;
using io::outr;
using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;
#define rep1(a) for(ll i = 0; i < a; i++)
#define rep2(i, a) for(ll i = 0; i < a; i++)
#define rep3(i, a, b) for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a) for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
T res = 0;
for(auto &&a : v) res += a;
return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
if (v.empty()) return {};
T cur = v.front();
int cnt = 1;
vector<pair<T,int>> res;
for (int i = 1; i < (int)v.size(); i++) {
if (cur == v[i]) cnt++;
else {
res.emplace_back(cur, cnt);
cnt = 1; cur = v[i];
}
}
res.emplace_back(cur, cnt);
return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }
template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
ll mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return ok;
}
template <typename F>
ll binary_search_real(F check, double ok, double ng, int iter = 60) {
for (int _ = 0; _ < iter; _++) {
double mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return (ok + ng) / 2;
}
// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
assert(b > 0);
ll c = a % b;
return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
ll q = div_floor(a,b);
return {q, a - b*q};
}
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
template<typename T> struct Binomial {
vector<T> fact_, inv_, finv_;
constexpr Binomial() {}
constexpr Binomial(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
constexpr int mod = T::get_mod();
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[mod%i] * (mod/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T perm(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
constexpr T com_naive(int n, int k) const noexcept {
if (n < 0 || k < 0 || n < k) return 0;
T res = T(1);
k = min(k, n-k);
for (int i = 1; i <= k; i++)res *= (n--) * inv(i);
return res;
}
template <typename I>
constexpr T multi(const vector<I> &v) const noexcept {
static_assert(is_integral<I>::value);
I n = 0;
for (auto& x : v) {
if (x < 0) return 0;
n += x;
}
T res = fact(n);
for (auto &x : v) res *= finv(x);
return res;
}
// [x^k] (1-x)^{-n} = com(n+k-1, k)
constexpr T neg(int n, int k) const noexcept {
if (n < 0 || k < 0) return 0;
return k == 0 ? 1 : com(n+k-1, k);
}
};
const int mod = 998244353;
//const int mod = 1000000007;
using mint = LazyMontgomeryModInt<mod>;
Binomial<mint> bc(300000);
int main() {
int n; in(n);
vv(int, g, n);
rep(i,n-1) {
int u,v; in(u,v); u--; v--;
g[u].push_back(v);
g[v].push_back(u);
}
auto dfs = [&] (auto dfs, int u, int p) -> mint {
mint fu = 1;
int s = 1;
for(int v : g[u]) if (v != p) {
mint fv = dfs(dfs, v, u);
fu *= fv;
s++;
}
if(p == -1) fu *= bc.fact(s-1);
else fu *= bc.fact(s);
return fu;
};
out(dfs(dfs, 0, -1) * bc.finv(n-1));
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0