結果

問題 No.2981 Pack Tree into Grid
ユーザー 👑 Nachia
提出日時 2024-12-05 00:24:28
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 18,053 bytes
コンパイル時間 2,859 ms
コンパイル使用メモリ 127,544 KB
最終ジャッジ日時 2025-02-26 10:55:56
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
const i64 INF = 1001001001001001001;
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
using namespace std;
#include <atcoder/modint>
using Modint = atcoder::static_modint<998244353>;
#include <utility>
#include <cassert>
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
int xorval() const { return from ^ to; }
};
Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, int undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
template<class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, int offset = 0){
Graph res(n, undirected, m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
m_n = newV;
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
#include <atcoder/string>
namespace nachia{
std::vector<int> BfsDistance(const nachia::CsrArray<int>& adj, const std::vector<int>& start){
std::vector<int> dist(adj.size(), -1), bfs(adj.size());
int p1 = 0;
for(int s : start) if(dist[s] == -1){
dist[s] = 0;
bfs[p1++] = s;
}
for(int i=0; i<p1; i++){
int p = bfs[i];
for(int nx : adj[p]) if(dist[nx] == -1){
dist[nx] = dist[p] + 1;
bfs[p1++] = nx;
}
}
return dist;
}
} // namespace nachia
namespace nachia{
// list of nodes through the diameter path
std::vector<int> UnitTreeDiameter(const CsrArray<int>& T){
int n = T.size();
std::vector<int> I(n, 0);
std::vector<int> P(n, -1);
auto ii = I.begin();
for(int i=0; i<(int)I.size(); i++){
int p = I[i];
for(int e : T[p]) if(P[p] != e){
P[e] = p;
*++ii = e;
}
}
P[I[n-1]] = -1;
for(int i=n-1; i>=0; i--){
int p = I[i];
for(int e : T[p]) if(P[p] != e){
P[e] = p;
*--ii = e;
}
}
std::vector<int> res = { I[0] };
int sz = 0, szp = res[0];
while(P[szp] != -1){ sz++; szp = P[szp]; }
res.reserve(sz);
while(P[res.back()] != -1){ res.push_back(P[res.back()]);}
return res;
}
std::vector<int> UnitTreeDiameter(const Graph& T){
return UnitTreeDiameter(T.getAdjacencyArray(true));
}
std::vector<int> UnitTreeMaxDistance(const Graph& T){
int n = T.numVertices();
auto adj = T.getAdjacencyArray();
auto diam = UnitTreeDiameter(adj);
auto d0 = BfsDistance(adj, std::vector<int>(1,diam.front()));
auto d1 = BfsDistance(adj, std::vector<int>(1,diam.back()));
for(int i=0; i<n; i++) if(d0[i] < d1[i]) d0[i] = d1[i];
return d0;
}
} // namespace nachia
namespace nachia{
// size 1 : center is a node
// size 2 : center is an edge between them
std::vector<int> UnitTreeCenter(const CsrArray<int>& T){
auto diameter = UnitTreeDiameter(T);
if(diameter.size() % 2 == 1){
return { diameter[diameter.size() / 2] };
}
return { diameter[diameter.size() / 2 - 1], diameter[diameter.size() / 2] };
}
std::vector<int> UnitTreeCenter(const Graph& T){
return UnitTreeCenter(T.getAdjacencyArray(true));
}
} // namespace nachia
namespace nachia{
namespace treetourlex_internal{
void sort_tg_by(CsrArray<int>& tg, std::vector<int>& by, int bound){
std::vector<int> cnt(bound + 1);
for(int i=0; i<(int)tg.size(); i++) for(int v : tg[i]) cnt[by[v]]++;
for(int i=0; i<bound; i++) cnt[i+1] += cnt[i];
std::vector<std::pair<int,int>> bucket(cnt.back());
for(int i=0; i<(int)tg.size(); i++) for(int v : tg[i]) bucket[--cnt[by[v]]] = std::make_pair(i,v);
std::vector<int> cnt2(tg.size());
for(auto [i,v] : bucket) tg[i][cnt2[i]++] = v;
}
std::vector<int> coord_compress_from_arr_by(CsrArray<int>& tg, std::vector<int>& by, int bound){
int n = tg.size();
std::vector<int> sorted_tg_idx;
auto predicate_by_that = [&](int l, int r) -> bool { return by[l] == by[r]; };
std::vector<int> sa_src;
std::vector<int> sa_recover;
for(int i=0; i<n; i++){
sa_recover.push_back(i);
for(auto a : tg[i]){
sa_src.push_back(by[a] + 1);
sa_recover.push_back(-1);
}
sa_src.push_back(0);
}
auto sa = atcoder::suffix_array(sa_src, bound);
for(int i=0; i<(int)sa.size(); i++) if(sa_recover[sa[i]] != -1) sorted_tg_idx.push_back(sa_recover[sa[i]]);
std::vector<int> res(n);
for(int i=1; i<n; i++){
res[sorted_tg_idx[i]] = res[sorted_tg_idx[i-1]];
bool same = std::equal(tg[sorted_tg_idx[i-1]].begin(), tg[sorted_tg_idx[i-1]].end(), tg[sorted_tg_idx[i]].begin(), tg[sorted_tg_idx[i]].end
            (), predicate_by_that);
if(!same) res[sorted_tg_idx[i]]++;
}
return res;
}
} // namespace internal
struct AHUAlgorithmLinearTime{
int N;
std::vector<int> compressed;
std::vector<int> depth;
CsrArray<int> children_ordered;
int root;
// O(N) time
AHUAlgorithmLinearTime(const Graph& E, int new_root = 0){
root = new_root;
N = E.numVertices();
auto adj = E.getAdjacencyArray();
depth.assign(N, -1);
std::vector<int> parent(N, -1);
std::vector<int> bfs = {root};
bfs.reserve(N);
depth[root] = 0;
for(int i=0; i<N; i++){
int p = bfs[i];
for(int e : adj[p]) if(depth[e] == -1){
depth[e] = depth[p] + 1;
parent[e] = p;
bfs.push_back(e);
}
}
int max_depth = *max_element(depth.begin(), depth.end());
CsrArray<int> from_depth; {
std::vector<std::pair<int,int>> elems;
for(int i=0; i<N; i++) elems.push_back(std::make_pair(depth[i], i));
from_depth = CsrArray<int>::Construct(max_depth+2, elems);
}
compressed.assign(N, 0);
/* children_ordered */ {
std::vector<std::pair<int,int>> edges;
for(int p=0; p<N; p++) for(int c : adj[p]) if(depth[p] < depth[c]) edges.push_back(std::make_pair(p,c));
children_ordered = CsrArray<int>::Construct(N, edges);
}
for(int d = max_depth; d >= 0; d--){
auto vtxs = from_depth[d];
CsrArray<int> children_ordered_part; {
std::vector<std::pair<int,int>> elems;
for(int i=0; i<(int)vtxs.size(); i++) for(auto p : children_ordered[vtxs[i]]) elems.push_back(std::make_pair(i,p));
children_ordered_part = CsrArray<int>::Construct(vtxs.size(), elems);
}
treetourlex_internal::sort_tg_by(children_ordered_part, compressed, from_depth[d+1].size());
auto compressed_part = treetourlex_internal::coord_compress_from_arr_by(children_ordered_part, compressed, from_depth[d+1].size());
for(int i=0; i<(int)vtxs.size(); i++) for(int j=0; j<(int)children_ordered_part[i].size(); j++) children_ordered[vtxs[i]][j] =
                children_ordered_part[i][j];
for(int i=0; i<(int)vtxs.size(); i++) compressed[vtxs[i]] = compressed_part[i];
}
}
void secondary(){
std::vector<int> bfs = {root};
std::vector<int> parent(N, -1);
std::vector<int> size(N, 1);
bfs.reserve(N);
for(int i=0; i<N; i++){
int p = bfs[i];
for(int e : children_ordered[p]){
parent[e] = p;
bfs.push_back(e);
}
}
for(int i=N-1; i>=1; i--) size[parent[bfs[i]]] += size[bfs[i]];
std::vector<int> pos(N, 0);
std::vector<int> brack(N, 0);
for(int i=0; i<N; i++){
int p = bfs[i];
int posv = pos[p] + 1;
brack[pos[p] + size[p] - 1]++;
for(int e : children_ordered[bfs[i]]){
pos[e] = posv;
posv += size[e];
}
}
auto sa = atcoder::suffix_array(brack, N);
auto lcp = atcoder::lcp_array(brack, sa);
std::vector<int> invpos(N, 0);
for(int i=0; i<N; i++) invpos[pos[i]] = i;
compressed[invpos[sa[0]]] = 0;
for(int i=1; i<N; i++){
int prevtx = invpos[sa[i-1]];
int vtx = invpos[sa[i]];
compressed[vtx] = compressed[prevtx];
if(lcp[i-1] < size[vtx]-1 || size[prevtx] != size[vtx]) compressed[vtx]++;
}
}
static bool TreeIsomorphism(const Graph& a, const Graph& b){
if(a.numVertices() != b.numVertices()) return false;
int n = a.numVertices();
if(n == 1) return true;
int ca = UnitTreeCenter(a.getAdjacencyArray(true))[0];
auto Cb = UnitTreeCenter(b.getAdjacencyArray(true));
Graph g(n*2+1, true);
for(auto e : a) g.addEdge(1 + e.from, 1 + e.to);
for(auto e : b) g.addEdge(1 + n + e.from, 1 + n + e.to);
for(auto cb : Cb){
Graph g2 = g;
g2.addEdge(0, 1 + ca);
g2.addEdge(0, 1 + n + cb);
auto ahu = AHUAlgorithmLinearTime(g2, 0).compressed;
if(ahu[1 + ca] == ahu[1 + n + cb]) return true;
}
return false;
}
static vector<pair<int,int>> TreeIsomorphismGetRoot(const Graph& a, const Graph& b){
if(a.numVertices() != b.numVertices()) return {};
int n = a.numVertices();
if(n == 1) return {{0,0}};
int ca = UnitTreeCenter(a.getAdjacencyArray(true))[0];
auto Cb = UnitTreeCenter(b.getAdjacencyArray(true));
Graph g(n*2+1, true);
for(auto e : a) g.addEdge(1 + e.from, 1 + e.to);
for(auto e : b) g.addEdge(1 + n + e.from, 1 + n + e.to);
for(auto cb : Cb){
Graph g2 = g;
g2.addEdge(0, 1 + ca);
g2.addEdge(0, 1 + n + cb);
auto ahu = AHUAlgorithmLinearTime(g2, 0).compressed;
if(ahu[1 + ca] == ahu[1 + n + cb]) return {{ca,cb}};
}
return {};
}
};
} // namespace nachia
void testcase(){
i64 N; cin >> N;
vector<i64> U(N-1), V(N-1), D(N-1);
rep(i,N-1){ cin >> U[i] >> V[i] >> D[i]; U[i]--; V[i]--; }
i64 H, W; cin >> H >> W;
vector<string> S(H); rep(y,H) cin >> S[y];
int N2 = 0; rep(y,H) rep(x,W) if(S[y][x] == '#') N2++;
nachia::Graph T0(N2, true);
vector<pair<int,int>> Map0;
{
vector<vector<int>> Id(H, vector<int>(W));
int idi = 0;
rep(y,H) rep(x,W) if(S[y][x] == '#') Id[y][x] = idi++;
rep(y,H) rep(x,W-1) if(S[y][x] == '#' && S[y][x+1] == '#'){
T0.addEdge(Id[y][x], Id[y][x+1]);
}
rep(y,H-1) rep(x,W) if(S[y][x] == '#' && S[y+1][x] == '#'){
T0.addEdge(Id[y][x], Id[y+1][x]);
}
rep(y,H) rep(x,W) if(S[y][x] == '#') Map0.push_back({y,x});
}
nachia::Graph T1(N2, true);
{
int idi = N;
rep(e,N-1){
int u = U[e];
rep(d,D[e]-1){
int v = idi++;
if(v >= N2){ cout << "No\n"; return; }
T1.addEdge(u, v);
u = v;
}
T1.addEdge(u, V[e]);
}
if(idi != N2){ cout << "No\n"; return; }
}
auto root = nachia::AHUAlgorithmLinearTime::TreeIsomorphismGetRoot(T0, T1);
if(root.empty()){ cout << "No\n"; return; }
auto [r0, r1] = root[0];
auto T0x = nachia::AHUAlgorithmLinearTime(T0, r0);
auto T1x = nachia::AHUAlgorithmLinearTime(T1, r1);
//cout << "N2 = " << N2 << endl;
//
//for(auto [u,v] : T0) cout << u << " " << v << endl;
//
//cout << "##" << endl;
//
//for(auto [u,v] : T1) cout << u << " " << v << endl;
//
//cout << T0x.children_ordered.fullSize() << endl;
//
//cout << T1x.children_ordered.fullSize() << endl;
//
//cout << "##" << endl;
//
//cout << "r0 = " << r0 << " , r1 = " << r1 << endl;
//rep(u,N2){
// cout << u << " : ";
// for(auto v : T0x.children_ordered[u]) cout << v << " ";
// cout << endl;
//}
vector<int> bfs0; bfs0.push_back(r0);
vector<int> bfs1; bfs1.push_back(r1);
rep(i,bfs0.size()){
//cout << "i = " << i << endl;
int u0 = bfs0[i];
int u1 = bfs1[i];
for(auto v : T0x.children_ordered[u0]){
bfs0.push_back(v);
}
for(auto v : T1x.children_ordered[u1]){
bfs1.push_back(v);
}
}
//cout << "##" << endl;
vector<int> mapping(N2);
rep(i,N2) mapping[bfs1[i]] = bfs0[i];
//cout << "##" << endl;
cout << "Yes\n";
rep(i,N){
auto [y,x] = Map0[mapping[i]];
cout << (y+1) << ' ' << (x+1) << '\n';
}
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
i64 Q = 0; cin >> Q;
rep(qi,Q) testcase();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0