結果
問題 | No.2981 Pack Tree into Grid |
ユーザー | 👑 Nachia |
提出日時 | 2024-12-05 00:24:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 31 ms / 2,000 ms |
コード長 | 18,053 bytes |
コンパイル時間 | 2,792 ms |
コンパイル使用メモリ | 128,740 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-05 00:24:33 |
合計ジャッジ時間 | 5,184 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 23 ms
5,248 KB |
testcase_02 | AC | 23 ms
5,248 KB |
testcase_03 | AC | 24 ms
5,248 KB |
testcase_04 | AC | 24 ms
5,248 KB |
testcase_05 | AC | 25 ms
5,248 KB |
testcase_06 | AC | 29 ms
5,248 KB |
testcase_07 | AC | 30 ms
5,248 KB |
testcase_08 | AC | 31 ms
5,248 KB |
testcase_09 | AC | 31 ms
5,248 KB |
testcase_10 | AC | 22 ms
5,248 KB |
testcase_11 | AC | 21 ms
5,248 KB |
testcase_12 | AC | 22 ms
5,248 KB |
testcase_13 | AC | 22 ms
5,248 KB |
testcase_14 | AC | 24 ms
5,248 KB |
testcase_15 | AC | 17 ms
5,248 KB |
testcase_16 | AC | 17 ms
5,248 KB |
testcase_17 | AC | 17 ms
5,248 KB |
testcase_18 | AC | 17 ms
5,248 KB |
testcase_19 | AC | 18 ms
5,248 KB |
testcase_20 | AC | 18 ms
5,248 KB |
testcase_21 | AC | 5 ms
5,248 KB |
testcase_22 | AC | 5 ms
5,248 KB |
testcase_23 | AC | 8 ms
5,248 KB |
testcase_24 | AC | 17 ms
5,248 KB |
testcase_25 | AC | 8 ms
5,248 KB |
testcase_26 | AC | 9 ms
5,248 KB |
testcase_27 | AC | 3 ms
5,248 KB |
testcase_28 | AC | 6 ms
5,248 KB |
ソースコード
#ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include <iostream> #include <string> #include <vector> #include <algorithm> using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i<int(n); i++) const i64 INF = 1001001001001001001; template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; } template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; } using namespace std; #include <atcoder/modint> using Modint = atcoder::static_modint<998244353>; #include <utility> #include <cassert> namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, int undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } template<class Cin> static Graph Input(Cin& cin, int n, bool undirected, int m, int offset = 0){ Graph res(n, undirected, m); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia #include <atcoder/string> namespace nachia{ std::vector<int> BfsDistance(const nachia::CsrArray<int>& adj, const std::vector<int>& start){ std::vector<int> dist(adj.size(), -1), bfs(adj.size()); int p1 = 0; for(int s : start) if(dist[s] == -1){ dist[s] = 0; bfs[p1++] = s; } for(int i=0; i<p1; i++){ int p = bfs[i]; for(int nx : adj[p]) if(dist[nx] == -1){ dist[nx] = dist[p] + 1; bfs[p1++] = nx; } } return dist; } } // namespace nachia namespace nachia{ // list of nodes through the diameter path std::vector<int> UnitTreeDiameter(const CsrArray<int>& T){ int n = T.size(); std::vector<int> I(n, 0); std::vector<int> P(n, -1); auto ii = I.begin(); for(int i=0; i<(int)I.size(); i++){ int p = I[i]; for(int e : T[p]) if(P[p] != e){ P[e] = p; *++ii = e; } } P[I[n-1]] = -1; for(int i=n-1; i>=0; i--){ int p = I[i]; for(int e : T[p]) if(P[p] != e){ P[e] = p; *--ii = e; } } std::vector<int> res = { I[0] }; int sz = 0, szp = res[0]; while(P[szp] != -1){ sz++; szp = P[szp]; } res.reserve(sz); while(P[res.back()] != -1){ res.push_back(P[res.back()]);} return res; } std::vector<int> UnitTreeDiameter(const Graph& T){ return UnitTreeDiameter(T.getAdjacencyArray(true)); } std::vector<int> UnitTreeMaxDistance(const Graph& T){ int n = T.numVertices(); auto adj = T.getAdjacencyArray(); auto diam = UnitTreeDiameter(adj); auto d0 = BfsDistance(adj, std::vector<int>(1,diam.front())); auto d1 = BfsDistance(adj, std::vector<int>(1,diam.back())); for(int i=0; i<n; i++) if(d0[i] < d1[i]) d0[i] = d1[i]; return d0; } } // namespace nachia namespace nachia{ // size 1 : center is a node // size 2 : center is an edge between them std::vector<int> UnitTreeCenter(const CsrArray<int>& T){ auto diameter = UnitTreeDiameter(T); if(diameter.size() % 2 == 1){ return { diameter[diameter.size() / 2] }; } return { diameter[diameter.size() / 2 - 1], diameter[diameter.size() / 2] }; } std::vector<int> UnitTreeCenter(const Graph& T){ return UnitTreeCenter(T.getAdjacencyArray(true)); } } // namespace nachia namespace nachia{ namespace treetourlex_internal{ void sort_tg_by(CsrArray<int>& tg, std::vector<int>& by, int bound){ std::vector<int> cnt(bound + 1); for(int i=0; i<(int)tg.size(); i++) for(int v : tg[i]) cnt[by[v]]++; for(int i=0; i<bound; i++) cnt[i+1] += cnt[i]; std::vector<std::pair<int,int>> bucket(cnt.back()); for(int i=0; i<(int)tg.size(); i++) for(int v : tg[i]) bucket[--cnt[by[v]]] = std::make_pair(i,v); std::vector<int> cnt2(tg.size()); for(auto [i,v] : bucket) tg[i][cnt2[i]++] = v; } std::vector<int> coord_compress_from_arr_by(CsrArray<int>& tg, std::vector<int>& by, int bound){ int n = tg.size(); std::vector<int> sorted_tg_idx; auto predicate_by_that = [&](int l, int r) -> bool { return by[l] == by[r]; }; std::vector<int> sa_src; std::vector<int> sa_recover; for(int i=0; i<n; i++){ sa_recover.push_back(i); for(auto a : tg[i]){ sa_src.push_back(by[a] + 1); sa_recover.push_back(-1); } sa_src.push_back(0); } auto sa = atcoder::suffix_array(sa_src, bound); for(int i=0; i<(int)sa.size(); i++) if(sa_recover[sa[i]] != -1) sorted_tg_idx.push_back(sa_recover[sa[i]]); std::vector<int> res(n); for(int i=1; i<n; i++){ res[sorted_tg_idx[i]] = res[sorted_tg_idx[i-1]]; bool same = std::equal(tg[sorted_tg_idx[i-1]].begin(), tg[sorted_tg_idx[i-1]].end(), tg[sorted_tg_idx[i]].begin(), tg[sorted_tg_idx[i]].end(), predicate_by_that); if(!same) res[sorted_tg_idx[i]]++; } return res; } } // namespace internal struct AHUAlgorithmLinearTime{ int N; std::vector<int> compressed; std::vector<int> depth; CsrArray<int> children_ordered; int root; // O(N) time AHUAlgorithmLinearTime(const Graph& E, int new_root = 0){ root = new_root; N = E.numVertices(); auto adj = E.getAdjacencyArray(); depth.assign(N, -1); std::vector<int> parent(N, -1); std::vector<int> bfs = {root}; bfs.reserve(N); depth[root] = 0; for(int i=0; i<N; i++){ int p = bfs[i]; for(int e : adj[p]) if(depth[e] == -1){ depth[e] = depth[p] + 1; parent[e] = p; bfs.push_back(e); } } int max_depth = *max_element(depth.begin(), depth.end()); CsrArray<int> from_depth; { std::vector<std::pair<int,int>> elems; for(int i=0; i<N; i++) elems.push_back(std::make_pair(depth[i], i)); from_depth = CsrArray<int>::Construct(max_depth+2, elems); } compressed.assign(N, 0); /* children_ordered */ { std::vector<std::pair<int,int>> edges; for(int p=0; p<N; p++) for(int c : adj[p]) if(depth[p] < depth[c]) edges.push_back(std::make_pair(p,c)); children_ordered = CsrArray<int>::Construct(N, edges); } for(int d = max_depth; d >= 0; d--){ auto vtxs = from_depth[d]; CsrArray<int> children_ordered_part; { std::vector<std::pair<int,int>> elems; for(int i=0; i<(int)vtxs.size(); i++) for(auto p : children_ordered[vtxs[i]]) elems.push_back(std::make_pair(i,p)); children_ordered_part = CsrArray<int>::Construct(vtxs.size(), elems); } treetourlex_internal::sort_tg_by(children_ordered_part, compressed, from_depth[d+1].size()); auto compressed_part = treetourlex_internal::coord_compress_from_arr_by(children_ordered_part, compressed, from_depth[d+1].size()); for(int i=0; i<(int)vtxs.size(); i++) for(int j=0; j<(int)children_ordered_part[i].size(); j++) children_ordered[vtxs[i]][j] = children_ordered_part[i][j]; for(int i=0; i<(int)vtxs.size(); i++) compressed[vtxs[i]] = compressed_part[i]; } } void secondary(){ std::vector<int> bfs = {root}; std::vector<int> parent(N, -1); std::vector<int> size(N, 1); bfs.reserve(N); for(int i=0; i<N; i++){ int p = bfs[i]; for(int e : children_ordered[p]){ parent[e] = p; bfs.push_back(e); } } for(int i=N-1; i>=1; i--) size[parent[bfs[i]]] += size[bfs[i]]; std::vector<int> pos(N, 0); std::vector<int> brack(N, 0); for(int i=0; i<N; i++){ int p = bfs[i]; int posv = pos[p] + 1; brack[pos[p] + size[p] - 1]++; for(int e : children_ordered[bfs[i]]){ pos[e] = posv; posv += size[e]; } } auto sa = atcoder::suffix_array(brack, N); auto lcp = atcoder::lcp_array(brack, sa); std::vector<int> invpos(N, 0); for(int i=0; i<N; i++) invpos[pos[i]] = i; compressed[invpos[sa[0]]] = 0; for(int i=1; i<N; i++){ int prevtx = invpos[sa[i-1]]; int vtx = invpos[sa[i]]; compressed[vtx] = compressed[prevtx]; if(lcp[i-1] < size[vtx]-1 || size[prevtx] != size[vtx]) compressed[vtx]++; } } static bool TreeIsomorphism(const Graph& a, const Graph& b){ if(a.numVertices() != b.numVertices()) return false; int n = a.numVertices(); if(n == 1) return true; int ca = UnitTreeCenter(a.getAdjacencyArray(true))[0]; auto Cb = UnitTreeCenter(b.getAdjacencyArray(true)); Graph g(n*2+1, true); for(auto e : a) g.addEdge(1 + e.from, 1 + e.to); for(auto e : b) g.addEdge(1 + n + e.from, 1 + n + e.to); for(auto cb : Cb){ Graph g2 = g; g2.addEdge(0, 1 + ca); g2.addEdge(0, 1 + n + cb); auto ahu = AHUAlgorithmLinearTime(g2, 0).compressed; if(ahu[1 + ca] == ahu[1 + n + cb]) return true; } return false; } static vector<pair<int,int>> TreeIsomorphismGetRoot(const Graph& a, const Graph& b){ if(a.numVertices() != b.numVertices()) return {}; int n = a.numVertices(); if(n == 1) return {{0,0}}; int ca = UnitTreeCenter(a.getAdjacencyArray(true))[0]; auto Cb = UnitTreeCenter(b.getAdjacencyArray(true)); Graph g(n*2+1, true); for(auto e : a) g.addEdge(1 + e.from, 1 + e.to); for(auto e : b) g.addEdge(1 + n + e.from, 1 + n + e.to); for(auto cb : Cb){ Graph g2 = g; g2.addEdge(0, 1 + ca); g2.addEdge(0, 1 + n + cb); auto ahu = AHUAlgorithmLinearTime(g2, 0).compressed; if(ahu[1 + ca] == ahu[1 + n + cb]) return {{ca,cb}}; } return {}; } }; } // namespace nachia void testcase(){ i64 N; cin >> N; vector<i64> U(N-1), V(N-1), D(N-1); rep(i,N-1){ cin >> U[i] >> V[i] >> D[i]; U[i]--; V[i]--; } i64 H, W; cin >> H >> W; vector<string> S(H); rep(y,H) cin >> S[y]; int N2 = 0; rep(y,H) rep(x,W) if(S[y][x] == '#') N2++; nachia::Graph T0(N2, true); vector<pair<int,int>> Map0; { vector<vector<int>> Id(H, vector<int>(W)); int idi = 0; rep(y,H) rep(x,W) if(S[y][x] == '#') Id[y][x] = idi++; rep(y,H) rep(x,W-1) if(S[y][x] == '#' && S[y][x+1] == '#'){ T0.addEdge(Id[y][x], Id[y][x+1]); } rep(y,H-1) rep(x,W) if(S[y][x] == '#' && S[y+1][x] == '#'){ T0.addEdge(Id[y][x], Id[y+1][x]); } rep(y,H) rep(x,W) if(S[y][x] == '#') Map0.push_back({y,x}); } nachia::Graph T1(N2, true); { int idi = N; rep(e,N-1){ int u = U[e]; rep(d,D[e]-1){ int v = idi++; if(v >= N2){ cout << "No\n"; return; } T1.addEdge(u, v); u = v; } T1.addEdge(u, V[e]); } if(idi != N2){ cout << "No\n"; return; } } auto root = nachia::AHUAlgorithmLinearTime::TreeIsomorphismGetRoot(T0, T1); if(root.empty()){ cout << "No\n"; return; } auto [r0, r1] = root[0]; auto T0x = nachia::AHUAlgorithmLinearTime(T0, r0); auto T1x = nachia::AHUAlgorithmLinearTime(T1, r1); //cout << "N2 = " << N2 << endl; // //for(auto [u,v] : T0) cout << u << " " << v << endl; // //cout << "##" << endl; // //for(auto [u,v] : T1) cout << u << " " << v << endl; // //cout << T0x.children_ordered.fullSize() << endl; // //cout << T1x.children_ordered.fullSize() << endl; // //cout << "##" << endl; // //cout << "r0 = " << r0 << " , r1 = " << r1 << endl; //rep(u,N2){ // cout << u << " : "; // for(auto v : T0x.children_ordered[u]) cout << v << " "; // cout << endl; //} vector<int> bfs0; bfs0.push_back(r0); vector<int> bfs1; bfs1.push_back(r1); rep(i,bfs0.size()){ //cout << "i = " << i << endl; int u0 = bfs0[i]; int u1 = bfs1[i]; for(auto v : T0x.children_ordered[u0]){ bfs0.push_back(v); } for(auto v : T1x.children_ordered[u1]){ bfs1.push_back(v); } } //cout << "##" << endl; vector<int> mapping(N2); rep(i,N2) mapping[bfs1[i]] = bfs0[i]; //cout << "##" << endl; cout << "Yes\n"; rep(i,N){ auto [y,x] = Map0[mapping[i]]; cout << (y+1) << ' ' << (x+1) << '\n'; } } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); i64 Q = 0; cin >> Q; rep(qi,Q) testcase(); return 0; }