結果
問題 | No.650 行列木クエリ |
ユーザー |
![]() |
提出日時 | 2024-12-06 18:17:35 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,603 bytes |
コンパイル時間 | 2,330 ms |
コンパイル使用メモリ | 157,596 KB |
実行使用メモリ | 32,048 KB |
最終ジャッジ日時 | 2024-12-06 18:17:40 |
合計ジャッジ時間 | 4,248 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 2 WA * 8 |
ソースコード
#include<iostream>#include<string>#include<vector>#include<algorithm>#include<numeric>#include<cmath>#include<utility>#include<tuple>#include<array>#include<cstdint>#include<cstdio>#include<iomanip>#include<map>#include<set>#include<unordered_map>#include<unordered_set>#include<queue>#include<stack>#include<deque>#include<bitset>#include<cctype>#include<chrono>#include<random>#include<cassert>#include<cstddef>#include<iterator>#include<string_view>#include<type_traits>#include<functional>#ifdef LOCAL# include "debug_print.hpp"# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)#else# define debug(...) (static_cast<void>(0))#endifusing namespace std;namespace io {template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}template <typename T, size_t N = 0>istream &operator>>(istream &is, array<T, N> &v) {for (auto &x : v) is >> x;return is;}template <size_t N = 0, typename T>istream& cin_tuple_impl(istream &is, T &t) {if constexpr (N < std::tuple_size<T>::value) {auto &x = std::get<N>(t);is >> x;cin_tuple_impl<N + 1>(is, t);}return is;}template <class... T>istream &operator>>(istream &is, tuple<T...> &t) {return cin_tuple_impl(is, t);}template<typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template<typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template<typename T, size_t N>ostream &operator<<(ostream &os, const array<T, N> &v) {size_t n = v.size();for (size_t i = 0; i < n; i++) {if (i) os << " ";os << v[i];}return os;}template <size_t N = 0, typename T>ostream& cout_tuple_impl(ostream &os, const T &t) {if constexpr (N < std::tuple_size<T>::value) {if constexpr (N > 0) os << " ";const auto &x = std::get<N>(t);os << x;cout_tuple_impl<N + 1>(os, t);}return os;}template <class... T>ostream &operator<<(ostream &os, const tuple<T...> &t) {return cout_tuple_impl(os, t);}void in() {}template<typename T, class... U>void in(T &t, U &...u) {cin >> t;in(u...);}void out() { cout << "\n"; }template<typename T, class... U, char sep = ' '>void out(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}void outr() {}template<typename T, class... U, char sep = ' '>void outr(const T &t, const U &...u) {cout << t;outr(u...);}void __attribute__((constructor)) _c() {ios_base::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);}} // namespace iousing io::in;using io::out;using io::outr;using ll = long long;using D = double;using LD = long double;using P = pair<ll, ll>;using u8 = uint8_t;using u16 = uint16_t;using u32 = uint32_t;using u64 = uint64_t;using i128 = __int128;using u128 = unsigned __int128;using vi = vector<ll>;template <class T> using vc = vector<T>;template <class T> using vvc = vector<vc<T>>;template <class T> using vvvc = vector<vvc<T>>;template <class T> using vvvvc = vector<vvvc<T>>;template <class T> using vvvvvc = vector<vvvvc<T>>;#define vv(type, name, h, ...) \vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define vvv(type, name, h, w, ...) \vector<vector<vector<type>>> name( \h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...) \vector<vector<vector<vector<type>>>> name( \a, vector<vector<vector<type>>>( \b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))template<typename T> using PQ = priority_queue<T,vector<T>>;template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;#define rep1(a) for(ll i = 0; i < a; i++)#define rep2(i, a) for(ll i = 0; i < a; i++)#define rep3(i, a, b) for(ll i = a; i < b; i++)#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)#define overload4(a, b, c, d, e, ...) e#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)#define rrep1(a) for(ll i = (a)-1; i >= 0; i--)#define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--)#define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--)#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))#define ALL(v) v.begin(), v.end()#define RALL(v) v.rbegin(), v.rend()#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )#define SZ(v) ll(v.size())#define MIN(v) *min_element(ALL(v))#define MAX(v) *max_element(ALL(v))#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))template <typename T, typename U>T SUM(const vector<U> &v) {T res = 0;for(auto &&a : v) res += a;return res;}template <typename T>vector<pair<T,int>> RLE(const vector<T> &v) {if (v.empty()) return {};T cur = v.front();int cnt = 1;vector<pair<T,int>> res;for (int i = 1; i < (int)v.size(); i++) {if (cur == v[i]) cnt++;else {res.emplace_back(cur, cnt);cnt = 1; cur = v[i];}}res.emplace_back(cur, cnt);return res;}template<class T, class S>inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }template<class T, class S>inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }void YESNO(bool flag) { out(flag ? "YES" : "NO"); }void yesno(bool flag) { out(flag ? "Yes" : "No"); }int popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(ll x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>T get_bit(T x, int k) { return x >> k & 1; }template <typename T>T set_bit(T x, int k) { return x | T(1) << k; }template <typename T>T reset_bit(T x, int k) { return x & ~(T(1) << k); }template <typename T>T flip_bit(T x, int k) { return x ^ T(1) << k; }template <typename T>T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }template <typename T>T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }template <typename T>T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }template <typename T>T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }template <typename T>T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }template <typename T>T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }template <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {ll mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return ok;}template <typename F>ll binary_search_real(F check, double ok, double ng, int iter = 60) {for (int _ = 0; _ < iter; _++) {double mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return (ok + ng) / 2;}// max x s.t. b*x <= all div_floor(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b - (a % b < 0);}// max x s.t. b*x < all div_under(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b - (a % b <= 0);}// min x s.t. b*x >= all div_ceil(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b + (a % b > 0);}// min x s.t. b*x > all div_over(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b + (a % b >= 0);}// x = a mod b (b > 0), 0 <= x < bll modulo(ll a, ll b) {assert(b > 0);ll c = a % b;return c < 0 ? c + b : c;}// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)// div_floor(a,b), modulo(a,b)pair<ll,ll> divmod(ll a, ll b) {ll q = div_floor(a,b);return {q, a - b*q};}template <uint32_t mod>struct LazyMontgomeryModInt {using mint = LazyMontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 ret = mod;for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;return ret;}static constexpr u32 r = get_r();static constexpr u32 n2 = -u64(mod) % mod;static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");static_assert(r * mod == 1, "this code has bugs.");u32 a;constexpr LazyMontgomeryModInt() : a(0) {}constexpr LazyMontgomeryModInt(const int64_t &b): a(reduce(u64(b % mod + mod) * n2)){};static constexpr u32 reduce(const u64 &b) {return (b + u64(u32(b) * u32(-r)) * mod) >> 32;}constexpr mint &operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}constexpr mint &operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}constexpr mint &operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}constexpr mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}constexpr mint operator+(const mint &b) const { return mint(*this) += b; }constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }constexpr bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}constexpr bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}constexpr mint operator-() const { return mint() - mint(*this); }constexpr mint operator+() const { return mint(*this); }constexpr mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}constexpr mint inverse() const {int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;while (y > 0) {t = x / y;x -= t * y, u -= t * v;tmp = x, x = y, y = tmp;tmp = u, u = v, v = tmp;}return mint{u};}friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {int64_t t;is >> t;b = LazyMontgomeryModInt<mod>(t);return (is);}constexpr u32 get() const {u32 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static constexpr u32 get_mod() { return mod; }};// const int mod = 998244353;const int mod = 1000000007;using mint = LazyMontgomeryModInt<mod>;#define ZERO 0#define ONE 1#define UPD(c, a, b) (c) += (a) * (b)template <class T>vector<vector<T>> matrix_mul(const vector<vector<T>> &a, const vector<vector<T>> &b,int aR = -1, int bR = -1, int bC = -1) {assert(a.size() > 0 and b.size() > 0);if (aR == -1) aR = a.size(), bR = b.size(), bC = b[0].size();assert(bR == (int)a[0].size());vector<vector<T>> c(aR, vector<T>(bC, ZERO));for (int i = 0; i < aR; i++) for (int k = 0; k < bC; k++) {for (int j = 0; j < bR; j++) UPD(c[i][k], a[i][j], b[j][k]);}return c;}template <class T>vector<vector<T>> matrix_pow(vector<vector<T>> a, long long k) {int n = a.size();vector<vector<T>> b(n, vector<T> (n, ZERO));for (int i = 0; i < n; i++) b[i][i] = ONE;while (k) {if (k & 1) b = matrix_mul<T>(b, a);k >>= 1;if (k) a = matrix_mul<T>(a, a);}return b;}template <class T, int N>array<array<T, N>, N> matrix_mul(const array<array<T, N>, N> &a, const array<array<T, N>, N> &b) {array<array<T, N>, N> c{};for (int i = 0; i < N; i++) for (int k = 0; k < N; k++) {T sum = ZERO;for (int j = 0; j < N; j++) UPD(sum, a[i][j], b[j][k]);c[i][k] = sum;}return c;}template <class T, int N>array<array<T, N>, N> matrix_pow(array<array<T, N>, N> a, long long k) {array<array<T, N>, N> b{};for (int i = 0; i < N; i++) for (int j = 0; j < N; j++)b[i][j] = ZERO;for (int i = 0; i < N; i++) b[i][i] = ONE;while (k) {if (k & 1) b = matrix_mul<T, N>(b, a);k >>= 1;if (k) a = matrix_mul<T, N>(a, a);}return b;}#undef ZERO#undef ONE#undef UPDusing mat = array<array<mint,2>,2>;struct HeavyLightDecomposition {vector<vector<int>> g;vector<int> head, tin, tout, depth, par;HeavyLightDecomposition(int n_): g(n_),head(n_), tin(n_), tout(n_), depth(n_), par(n_) {}void add_edge(int u, int v) {g[u].push_back(v);g[v].push_back(u);}int dfs_sz(int u, int p, int d) {depth[u] = d;int sz_u = 1;int max_sz_ch = 0;for (int &v : g[u]) if (v != p) {par[v] = u;int sz_v = dfs_sz(v, u, d+1);sz_u += sz_v;if (max_sz_ch < sz_v) {max_sz_ch = sz_v;swap(g[u].front(), v);}}return sz_u;}void dfs_hld(int u, int p, int &k) {tin[u] = k++;for (int v : g[u]) if (v != p) {head[v] = (v == g[u].front() ? head[u] : v);dfs_hld(v, u, k);}tout[u] = k;}void build() {dfs_sz(0, -1, 0);int k = 0;/* head[0] = 0; */dfs_hld(0, -1, k);}int lca(int u, int v) {while (head[u] != head[v]) {if (depth[head[u]] > depth[head[v]]) u = par[head[u]];else v = par[head[v]];}return head[u] < head[v] ? u : v;}int distance(int u, int v) {return depth[u] + depth[v] - 2 * depth[lca(u, v)];}/* path (u to v) -> path_u, path_v (closed intervals) */pair<vector<pair<int,int>>, vector<pair<int,int>>> get_path(int u, int v) {vector<pair<int,int>> path_u, path_v;while (head[u] != head[v]) {if (depth[head[u]] > depth[head[v]]) {path_u.emplace_back(tin[u], tin[head[u]]);u = par[head[u]];}else {path_v.emplace_back(tin[v], tin[head[v]]);v = par[head[v]];}}if (depth[u] > depth[v]) path_u.emplace_back(tin[u], tin[v]);else path_v.emplace_back(tin[v], tin[u]);return {path_u, path_v};}/* subtree (u) -> [tin, tout) */pair<int,int> get_subtree(int u) {return {tin[u], tout[u]};}};#include "atcoder/segtree.hpp"using S = mat;S op(S a, S b) { return matrix_mul<mint,2>(a,b); }S e() { return { { {1,0}, {0,1} } }; }int main() {int n; in(n);HeavyLightDecomposition hld(n);vector<P> edges;rep(i,n-1){int u,v; in(u,v);edges.emplace_back(u,v);hld.add_edge(u,v);}hld.build();atcoder::segtree<S,op,e> seg(n);vector<int> etov(n-1);rep(i,n-1){auto [u,v] = edges[i];if(hld.depth[u] < hld.depth[v]) etov[i] = v;else etov[i] = u;}vector<vector<int>> table(n,vector<int>(17));rep(i,n) table[i][0] = hld.par[i];rep(j,16) rep(i,n) table[i][j+1] = table[table[i][j]][j];auto la = [&] (int u, int k) -> int{rep(d,17) if(k>>d&1) u = table[u][d];return u;};int q; in(q);while(q--){char c; in(c);if(c == 'x') {int i,x00,x01,x10,x11; in(i,x00,x01,x10,x11);seg.set(hld.tin[etov[i]], { { {x00,x01}, {x10,x11} } });}else{int i,j; in(i,j);i = la(j, hld.distance(i,j)-1);mat res = e();auto [pi, pj] = hld.get_path(i,j);reverse(ALL(pj));for (auto [l,r] : pj) res = matrix_mul<mint,2>(res, seg.prod(r,l+1));out(res[0][0], res[0][1], res[1][0], res[1][1]);}}}