結果

問題 No.2983 Christmas Color Grid (Advent Calender ver.)
ユーザー 👑 rin204
提出日時 2024-12-08 00:30:24
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 3,340 ms
コード長 35,317 bytes
コンパイル時間 3,916 ms
コンパイル使用メモリ 278,704 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-08 00:30:31
合計ジャッジ時間 5,862 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 64
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE
#include <bits/stdc++.h>
using namespace std;
namespace templates {
// type
using ll = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on
// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on
// const value
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
const double PI = acos(-1);
// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)
// function
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
string ctos(vector<char> &S) {
int n = S.size();
string ret = "";
for (int i = 0; i < n; i++) ret += S[i];
return ret;
}
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
// input and output
namespace io {
// __int128_t
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << ' ';
}
return os;
}
// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
is >> A.first >> A.second;
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
os << A.first << ' ' << A.second;
return os;
}
// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
is >> A[i];
}
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// tuple
template <typename T, size_t N>
struct TuplePrint {
static ostream &print(ostream &os, const T &t) {
TuplePrint<T, N - 1>::print(os, t);
os << ' ' << get<N - 1>(t);
return os;
}
};
template <typename T>
struct TuplePrint<T, 1> {
static ostream &print(ostream &os, const T &t) {
os << get<0>(t);
return os;
}
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
return os;
}
// io functions
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(std::forward<Tail>(tail)...);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void prispa(T A) {
priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
if (f)
print(A);
else
print(B);
return f;
}
template <class... T>
void inp(T &...a) {
(cin >> ... >> a);
}
} // namespace io
using namespace io;
// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
// yes / no
namespace yesno {
// yes
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
// no
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// possible
inline bool possible(bool f = true) {
cout << (f ? "possible" : "impossible") << endl;
return f;
}
inline bool Possible(bool f = true) {
cout << (f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool POSSIBLE(bool f = true) {
cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// impossible
inline bool impossible(bool f = true) {
cout << (!f ? "possible" : "impossible") << endl;
return f;
}
inline bool Impossible(bool f = true) {
cout << (!f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool IMPOSSIBLE(bool f = true) {
cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// Alice Bob
inline bool Alice(bool f = true) {
cout << (f ? "Alice" : "Bob") << endl;
return f;
}
inline bool Bob(bool f = true) {
cout << (f ? "Bob" : "Alice") << endl;
return f;
}
// Takahashi Aoki
inline bool Takahashi(bool f = true) {
cout << (f ? "Takahashi" : "Aoki") << endl;
return f;
}
inline bool Aoki(bool f = true) {
cout << (f ? "Aoki" : "Takahashi") << endl;
return f;
}
} // namespace yesno
using namespace yesno;
} // namespace templates
using namespace templates;
template <int MOD>
struct Modint {
int x;
Modint() : x(0) {}
Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Modint &operator+=(const Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Modint &operator-=(const Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Modint &operator*=(const Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Modint &operator/=(const Modint &p) {
*this *= p.inverse();
return *this;
}
Modint &operator%=(const Modint &p) {
assert(p.x == 0);
return *this;
}
Modint operator-() const {
return Modint(-x);
}
Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modint operator++(int) {
Modint result = *this;
++*this;
return result;
}
Modint operator--(int) {
Modint result = *this;
--*this;
return result;
}
friend Modint operator+(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) += rhs;
}
friend Modint operator-(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) -= rhs;
}
friend Modint operator*(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) *= rhs;
}
friend Modint operator/(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) /= rhs;
}
friend Modint operator%(const Modint &lhs, const Modint &rhs) {
assert(rhs.x == 0);
return Modint(lhs);
}
bool operator==(const Modint &p) const {
return x == p.x;
}
bool operator!=(const Modint &p) const {
return x != p.x;
}
bool operator<(const Modint &rhs) const {
return x < rhs.x;
}
bool operator<=(const Modint &rhs) const {
return x <= rhs.x;
}
bool operator>(const Modint &rhs) const {
return x > rhs.x;
}
bool operator>=(const Modint &rhs) const {
return x >= rhs.x;
}
Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
std::swap(a, b);
std::swap(u, v);
}
return Modint(u);
}
Modint pow(int64_t k) const {
Modint ret(1);
Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
std::pair<int, int> to_frac(int max_n = 1000) const {
int y = x;
for (int i = 1; i <= max_n; i++) {
if (y <= max_n) {
return {y, i};
} else if (MOD - y <= max_n) {
return {-(MOD - y), i};
}
y = (y + x) % MOD;
}
return {-1, -1};
}
friend std::ostream &operator<<(std::ostream &os, const Modint &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, Modint &p) {
int64_t y;
is >> y;
p = Modint<MOD>(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
struct Arbitrary_Modint {
int x;
static int MOD;
static void set_mod(int mod) {
MOD = mod;
}
Arbitrary_Modint() : x(0) {}
Arbitrary_Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
*this *= p.inverse();
return *this;
}
Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
assert(p.x == 0);
return *this;
}
Arbitrary_Modint operator-() const {
return Arbitrary_Modint(-x);
}
Arbitrary_Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Arbitrary_Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Arbitrary_Modint operator++(int) {
Arbitrary_Modint result = *this;
++*this;
return result;
}
Arbitrary_Modint operator--(int) {
Arbitrary_Modint result = *this;
--*this;
return result;
}
friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) += rhs;
}
friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) -= rhs;
}
friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) *= rhs;
}
friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) /= rhs;
}
friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
assert(rhs.x == 0);
return Arbitrary_Modint(lhs);
}
bool operator==(const Arbitrary_Modint &p) const {
return x == p.x;
}
bool operator!=(const Arbitrary_Modint &p) const {
return x != p.x;
}
bool operator<(const Arbitrary_Modint &rhs) {
return x < rhs.x;
}
bool operator<=(const Arbitrary_Modint &rhs) {
return x <= rhs.x;
}
bool operator>(const Arbitrary_Modint &rhs) {
return x > rhs.x;
}
bool operator>=(const Arbitrary_Modint &rhs) {
return x >= rhs.x;
}
Arbitrary_Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
std::swap(a, b);
std::swap(u, v);
}
return Arbitrary_Modint(u);
}
Arbitrary_Modint pow(int64_t k) const {
Arbitrary_Modint ret(1);
Arbitrary_Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) {
int64_t y;
is >> y;
p = Arbitrary_Modint(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
int Arbitrary_Modint::MOD = 998244353;
using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint = Arbitrary_Modint;
using mint = modint;
void solve() {
LL(h, w, K, M);
mint::set_mod(M);
vec(mint, powK, h * w + 1);
fori(i, h * w + 1) {
powK[i] = mint(i).pow(K);
}
map<pair<int, int>, vector<int>> cnt;
cnt[{1, 1}] = {
0,
1,
};
cnt[{1, 2}] = {
0,
2,
1,
};
cnt[{1, 3}] = {
0,
5,
2,
1,
};
cnt[{1, 4}] = {
0, 12, 5, 2, 1,
};
cnt[{1, 5}] = {
0, 28, 12, 5, 2, 1,
};
cnt[{1, 6}] = {
0, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 7}] = {
0, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 8}] = {
0, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 9}] = {
0, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 10}] = {
0, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 11}] = {
0, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 12}] = {
0, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 13}] = {
0, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 14}] = {
0, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 15}] = {
0, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 16}] = {
0, 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 17}] = {
0, 311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536,
704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 18}] = {
0, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536,
704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 19}] = {
0, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328,
1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 20}] = {
0, 2883584, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328,
1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 21}] = {
0, 6029312, 2883584, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168,
3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 22}] = {
0, 12582912, 6029312, 2883584, 1376256, 655360, 311296, 147456,
69632, 32768, 15360, 7168, 3328, 1536, 704, 320,
144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 23}] = {
0, 26214400, 12582912, 6029312, 2883584, 1376256, 655360, 311296,
147456, 69632, 32768, 15360, 7168, 3328, 1536, 704,
320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 24}] = {
0, 54525952, 26214400, 12582912, 6029312, 2883584, 1376256, 655360, 311296,
147456, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320,
144, 64, 28, 12, 5, 2, 1,
};
cnt[{1, 25}] = {
0, 113246208, 54525952, 26214400, 12582912, 6029312, 2883584, 1376256, 655360,
311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704,
320, 144, 64, 28, 12, 5, 2, 1,
};
cnt[{2, 2}] = {
0, 8, 4, 4, 1,
};
cnt[{2, 3}] = {
0, 40, 17, 14, 10, 6, 1,
};
cnt[{2, 4}] = {
0, 192, 80, 64, 39, 28, 20, 8, 1,
};
cnt[{2, 5}] = {
0, 896, 368, 296, 184, 120, 81, 58, 34, 10, 1,
};
cnt[{2, 6}] = {
0, 4096, 1664, 1344, 856, 560, 368, 240, 167, 112, 52, 12, 1,
};
cnt[{2, 7}] = {
0, 18432, 7424, 6016, 3904, 2568, 1712, 1112, 728, 488, 337, 198, 74, 14, 1,
};
cnt[{2, 8}] = {
0, 81920, 32768, 26624, 17536, 11584, 7816, 5136, 3384,
2208, 1456, 992, 647, 324, 100, 16, 1,
};
cnt[{2, 9}] = {
0, 360448, 143360, 116736, 77824, 51584, 35136, 23304, 15520, 10232,
6704, 4392, 2936, 1976, 1169, 498, 130, 18, 1,
};
cnt[{2, 10}] = {
0, 1572864, 622592, 507904, 342016, 227328, 156032, 104256, 70024, 46640, 30888,
20320, 13304, 8784, 5904, 3792, 1991, 728, 164, 20, 1,
};
cnt[{2, 11}] = {
0, 6815744, 2686976, 2195456, 1490944, 993280, 686080, 461184,
311872, 209416, 139968, 93048, 61440, 40328, 26480, 17624,
11672, 6952, 3217, 1022, 202, 22, 1,
};
cnt[{2, 12}] = {
0, 29360128, 11534336, 9437184, 6455296, 4308992, 2992128, 2021376, 1374592,
929088, 625544, 419408, 279656, 185376, 122088, 80112, 52888, 35200,
22416, 12160, 4967, 1388, 244, 24, 1,
};
cnt[{3, 3}] = {
0, 400, 144, 106, 84, 69, 52, 32, 9, 1,
};
cnt[{3, 4}] = {
0, 3840, 1360, 952, 705, 550, 445, 360, 270, 164, 62, 12, 1,
};
cnt[{3, 5}] = {
0, 35840, 12544, 8720, 6408, 4897, 3772, 2972, 2371, 1873, 1385, 854, 376, 101, 15, 1,
};
cnt[{3, 6}] = {
0, 327680, 113664, 78592, 57936, 44456, 34161, 26334, 20329, 15846,
12510, 9758, 7131, 4478, 2164, 714, 149, 18, 1,
};
cnt[{3, 7}] = {
0, 2949120, 1015808, 699392, 516864, 398928, 308296, 238385, 183352, 140476, 108244,
84130, 65926, 50898, 36946, 23558, 12123, 4602, 1205, 206, 21, 1,
};
cnt[{3, 8}] = {
0, 26214400, 8978432, 6160384, 4561920, 3537664, 2748496, 2136040, 1652625,
1269794, 973997, 746362, 574842, 446028, 347449, 266040, 192322, 124150,
66909, 28072, 8654, 1876, 272, 24, 1,
};
cnt[{4, 4}] = {
0, 73728, 25600, 17152, 11728, 9040, 7504, 6288, 5340,
4436, 3432, 2360, 1296, 492, 116, 16, 1,
};
cnt[{4, 5}] = {
0, 1376256, 471040, 314368, 213248, 158976, 128272, 105936, 89480, 75998, 64363,
53486, 42473, 31078, 19942, 10358, 3972, 1054, 186, 20, 1,
};
cnt[{4, 6}] = {
0, 25165824, 8519680, 5668864, 3856384, 2863104, 2288896, 1868032, 1553240,
1299184, 1090650, 919360, 774295, 643000, 517972, 394544, 274893, 167464,
83894, 32492, 9316, 1920, 272, 24, 1,
};
cnt[{5, 5}] = {
0, 51380224, 17301504, 11501568, 7749632, 5599232, 4361216, 3564416, 3023760,
2603088, 2265120, 1971974, 1703398, 1448460, 1194986, 939036, 687581, 454452,
258314, 119182, 42437, 11295, 2192, 296, 25, 1,
};
if (false) {
vector<int> di = {0, 1, 0, -1};
vector<int> dj = {1, 0, -1, 0};
fori(h, 1, 26) fori(w, h, 26) {
if (h * w > 25) break;
vec(ll, cnt, h * w + 1);
vvec(int, A, h, w);
stack<Pii> st;
fori(bit, 1 << (h * w)) {
fori(i, h) fori(j, w) {
A[i][j] = (bit >> (i * w + j)) & 1;
}
mint tot = 0;
fori(i, h) fori(j, w) {
if (A[i][j] == 0) continue;
ll now = 0;
st.push({i, j});
A[i][j] = 0;
now = 1;
while (!st.empty()) {
auto [ci, cj] = st.top();
st.pop();
fori(d, 4) {
int ni = ci + di[d];
int nj = cj + dj[d];
if (ni < 0 or ni >= h or nj < 0 or nj >= w) continue;
if (A[ni][nj] == 0) continue;
st.push({ni, nj});
A[ni][nj] = 0;
now++;
}
}
cnt[now]++;
tot += powK[now];
}
// dp[bit] = tot;
}
print("cnt[{", h, ", ", w, "}]={");
for (auto c : cnt) {
priend(c, ", ");
}
print("};");
}
}
mint all_ = 0;
if (h > w) swap(h, w);
fori(i, h * w + 1) {
ll v = cnt[{h, w}][i];
all_ += powK[i] * v;
}
all_ /= mint(2).pow(h * w);
mint ans = 0;
fori(i, 1, h * w + 1) {
ans += all_ / i;
}
print(ans);
}
int main() {
#ifndef INTERACTIVE
std::cin.tie(0)->sync_with_stdio(0);
#endif
// std::cout << std::fixed << std::setprecision(12);
int t;
t = 1;
// std::cin >> t;
while (t--) solve();
return 0;
}
// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "misc/Modint.hpp"
// using mint = modint;
//
// void solve() {
// LL(h, w, K, M);
// mint::set_mod(M);
//
// vec(mint, powK, h * w + 1);
// fori(i, h * w + 1) {
// powK[i] = mint(i).pow(K);
// }
//
// map<pair<int, int>, vector<int>> cnt;
//
// cnt[{1, 1}] = {
// 0,
// 1,
// };
// cnt[{1, 2}] = {
// 0,
// 2,
// 1,
// };
// cnt[{1, 3}] = {
// 0,
// 5,
// 2,
// 1,
// };
// cnt[{1, 4}] = {
// 0, 12, 5, 2, 1,
// };
// cnt[{1, 5}] = {
// 0, 28, 12, 5, 2, 1,
// };
// cnt[{1, 6}] = {
// 0, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 7}] = {
// 0, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 8}] = {
// 0, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 9}] = {
// 0, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 10}] = {
// 0, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 11}] = {
// 0, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 12}] = {
// 0, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 13}] = {
// 0, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 14}] = {
// 0, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 15}] = {
// 0, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 16}] = {
// 0, 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 17}] = {
// 0, 311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536,
// 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 18}] = {
// 0, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536,
// 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 19}] = {
// 0, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328,
// 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 20}] = {
// 0, 2883584, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168, 3328,
// 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 21}] = {
// 0, 6029312, 2883584, 1376256, 655360, 311296, 147456, 69632, 32768, 15360, 7168,
// 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 22}] = {
// 0, 12582912, 6029312, 2883584, 1376256, 655360, 311296, 147456,
// 69632, 32768, 15360, 7168, 3328, 1536, 704, 320,
// 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 23}] = {
// 0, 26214400, 12582912, 6029312, 2883584, 1376256, 655360, 311296,
// 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704,
// 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 24}] = {
// 0, 54525952, 26214400, 12582912, 6029312, 2883584, 1376256, 655360, 311296,
// 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704, 320,
// 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{1, 25}] = {
// 0, 113246208, 54525952, 26214400, 12582912, 6029312, 2883584, 1376256, 655360,
// 311296, 147456, 69632, 32768, 15360, 7168, 3328, 1536, 704,
// 320, 144, 64, 28, 12, 5, 2, 1,
// };
// cnt[{2, 2}] = {
// 0, 8, 4, 4, 1,
// };
// cnt[{2, 3}] = {
// 0, 40, 17, 14, 10, 6, 1,
// };
// cnt[{2, 4}] = {
// 0, 192, 80, 64, 39, 28, 20, 8, 1,
// };
// cnt[{2, 5}] = {
// 0, 896, 368, 296, 184, 120, 81, 58, 34, 10, 1,
// };
// cnt[{2, 6}] = {
// 0, 4096, 1664, 1344, 856, 560, 368, 240, 167, 112, 52, 12, 1,
// };
// cnt[{2, 7}] = {
// 0, 18432, 7424, 6016, 3904, 2568, 1712, 1112, 728, 488, 337, 198, 74, 14, 1,
// };
// cnt[{2, 8}] = {
// 0, 81920, 32768, 26624, 17536, 11584, 7816, 5136, 3384,
// 2208, 1456, 992, 647, 324, 100, 16, 1,
// };
// cnt[{2, 9}] = {
// 0, 360448, 143360, 116736, 77824, 51584, 35136, 23304, 15520, 10232,
// 6704, 4392, 2936, 1976, 1169, 498, 130, 18, 1,
// };
// cnt[{2, 10}] = {
// 0, 1572864, 622592, 507904, 342016, 227328, 156032, 104256, 70024, 46640, 30888,
// 20320, 13304, 8784, 5904, 3792, 1991, 728, 164, 20, 1,
// };
// cnt[{2, 11}] = {
// 0, 6815744, 2686976, 2195456, 1490944, 993280, 686080, 461184,
// 311872, 209416, 139968, 93048, 61440, 40328, 26480, 17624,
// 11672, 6952, 3217, 1022, 202, 22, 1,
// };
// cnt[{2, 12}] = {
// 0, 29360128, 11534336, 9437184, 6455296, 4308992, 2992128, 2021376, 1374592,
// 929088, 625544, 419408, 279656, 185376, 122088, 80112, 52888, 35200,
// 22416, 12160, 4967, 1388, 244, 24, 1,
// };
// cnt[{3, 3}] = {
// 0, 400, 144, 106, 84, 69, 52, 32, 9, 1,
// };
// cnt[{3, 4}] = {
// 0, 3840, 1360, 952, 705, 550, 445, 360, 270, 164, 62, 12, 1,
// };
// cnt[{3, 5}] = {
// 0, 35840, 12544, 8720, 6408, 4897, 3772, 2972, 2371, 1873, 1385, 854, 376, 101, 15, 1,
// };
// cnt[{3, 6}] = {
// 0, 327680, 113664, 78592, 57936, 44456, 34161, 26334, 20329, 15846,
// 12510, 9758, 7131, 4478, 2164, 714, 149, 18, 1,
// };
// cnt[{3, 7}] = {
// 0, 2949120, 1015808, 699392, 516864, 398928, 308296, 238385, 183352, 140476, 108244,
// 84130, 65926, 50898, 36946, 23558, 12123, 4602, 1205, 206, 21, 1,
// };
// cnt[{3, 8}] = {
// 0, 26214400, 8978432, 6160384, 4561920, 3537664, 2748496, 2136040, 1652625,
// 1269794, 973997, 746362, 574842, 446028, 347449, 266040, 192322, 124150,
// 66909, 28072, 8654, 1876, 272, 24, 1,
// };
// cnt[{4, 4}] = {
// 0, 73728, 25600, 17152, 11728, 9040, 7504, 6288, 5340,
// 4436, 3432, 2360, 1296, 492, 116, 16, 1,
// };
// cnt[{4, 5}] = {
// 0, 1376256, 471040, 314368, 213248, 158976, 128272, 105936, 89480, 75998, 64363,
// 53486, 42473, 31078, 19942, 10358, 3972, 1054, 186, 20, 1,
// };
// cnt[{4, 6}] = {
// 0, 25165824, 8519680, 5668864, 3856384, 2863104, 2288896, 1868032, 1553240,
// 1299184, 1090650, 919360, 774295, 643000, 517972, 394544, 274893, 167464,
// 83894, 32492, 9316, 1920, 272, 24, 1,
// };
// cnt[{5, 5}] = {
// 0, 51380224, 17301504, 11501568, 7749632, 5599232, 4361216, 3564416, 3023760,
// 2603088, 2265120, 1971974, 1703398, 1448460, 1194986, 939036, 687581, 454452,
// 258314, 119182, 42437, 11295, 2192, 296, 25, 1,
// };
//
// if (false) {
// vector<int> di = {0, 1, 0, -1};
// vector<int> dj = {1, 0, -1, 0};
//
// fori(h, 1, 26) fori(w, h, 26) {
// if (h * w > 25) break;
// vec(ll, cnt, h * w + 1);
//
// vvec(int, A, h, w);
// stack<Pii> st;
// fori(bit, 1 << (h * w)) {
// fori(i, h) fori(j, w) {
// A[i][j] = (bit >> (i * w + j)) & 1;
// }
//
// mint tot = 0;
// fori(i, h) fori(j, w) {
// if (A[i][j] == 0) continue;
// ll now = 0;
// st.push({i, j});
// A[i][j] = 0;
// now = 1;
// while (!st.empty()) {
// auto [ci, cj] = st.top();
// st.pop();
// fori(d, 4) {
// int ni = ci + di[d];
// int nj = cj + dj[d];
// if (ni < 0 or ni >= h or nj < 0 or nj >= w) continue;
// if (A[ni][nj] == 0) continue;
// st.push({ni, nj});
// A[ni][nj] = 0;
// now++;
// }
// }
//
// cnt[now]++;
//
// tot += powK[now];
// }
//
// // dp[bit] = tot;
// }
//
// print("cnt[{", h, ", ", w, "}]={");
// for (auto c : cnt) {
// priend(c, ", ");
// }
// print("};");
// }
// }
//
// mint all_ = 0;
// if (h > w) swap(h, w);
// fori(i, h * w + 1) {
// ll v = cnt[{h, w}][i];
// all_ += powK[i] * v;
// }
//
// all_ /= mint(2).pow(h * w);
// mint ans = 0;
// fori(i, 1, h * w + 1) {
// ans += all_ / i;
// }
// print(ans);
// }
//
// int main() {
// #ifndef INTERACTIVE
// std::cin.tie(0)->sync_with_stdio(0);
// #endif
// // std::cout << std::fixed << std::setprecision(12);
// int t;
// t = 1;
// // std::cin >> t;
// while (t--) solve();
// return 0;
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0