結果

問題 No.2983 Christmas Color Grid (Advent Calender ver.)
ユーザー apricityapricity
提出日時 2024-12-08 01:53:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 657 ms / 3,340 ms
コード長 11,175 bytes
コンパイル時間 2,152 ms
コンパイル使用メモリ 140,304 KB
実行使用メモリ 19,712 KB
最終ジャッジ日時 2024-12-08 01:53:25
合計ジャッジ時間 6,390 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 634 ms
18,816 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 326 ms
13,696 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 177 ms
9,216 KB
testcase_10 AC 8 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 3 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 3 ms
5,248 KB
testcase_16 AC 3 ms
5,248 KB
testcase_17 AC 3 ms
5,248 KB
testcase_18 AC 3 ms
5,248 KB
testcase_19 AC 9 ms
5,248 KB
testcase_20 AC 18 ms
7,424 KB
testcase_21 AC 50 ms
19,712 KB
testcase_22 AC 32 ms
5,248 KB
testcase_23 AC 192 ms
16,000 KB
testcase_24 AC 23 ms
5,248 KB
testcase_25 AC 323 ms
13,824 KB
testcase_26 AC 23 ms
5,248 KB
testcase_27 AC 657 ms
18,816 KB
testcase_28 AC 284 ms
10,880 KB
testcase_29 AC 28 ms
5,248 KB
testcase_30 AC 198 ms
9,216 KB
testcase_31 AC 7 ms
5,248 KB
testcase_32 AC 15 ms
5,248 KB
testcase_33 AC 35 ms
6,400 KB
testcase_34 AC 2 ms
5,248 KB
testcase_35 AC 2 ms
5,248 KB
testcase_36 AC 3 ms
5,248 KB
testcase_37 AC 3 ms
5,248 KB
testcase_38 AC 3 ms
5,248 KB
testcase_39 AC 3 ms
5,248 KB
testcase_40 AC 1 ms
5,248 KB
testcase_41 AC 2 ms
5,248 KB
testcase_42 AC 2 ms
5,248 KB
testcase_43 AC 2 ms
5,248 KB
testcase_44 AC 2 ms
5,248 KB
testcase_45 AC 2 ms
5,248 KB
testcase_46 AC 2 ms
5,248 KB
testcase_47 AC 2 ms
5,248 KB
testcase_48 AC 2 ms
5,248 KB
testcase_49 AC 2 ms
5,248 KB
testcase_50 AC 2 ms
5,248 KB
testcase_51 AC 2 ms
5,248 KB
testcase_52 AC 2 ms
5,248 KB
testcase_53 AC 2 ms
5,248 KB
testcase_54 AC 2 ms
5,248 KB
testcase_55 AC 2 ms
5,248 KB
testcase_56 AC 2 ms
5,248 KB
testcase_57 AC 2 ms
5,248 KB
testcase_58 AC 2 ms
5,248 KB
testcase_59 AC 2 ms
5,248 KB
testcase_60 AC 1 ms
5,248 KB
testcase_61 AC 2 ms
5,248 KB
testcase_62 AC 2 ms
5,248 KB
testcase_63 AC 2 ms
5,248 KB
testcase_64 AC 2 ms
5,248 KB
testcase_65 AC 2 ms
5,248 KB
testcase_66 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>

#ifdef LOCAL
#  include "debug_print.hpp"
#  define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#  define debug(...) (static_cast<void>(0))
#endif

using namespace std;

namespace io {

template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
    is >> p.first >> p.second;
    return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
    for (auto &x : v) is >> x;
    return is;
}
template <typename T, size_t N = 0>
istream &operator>>(istream &is, array<T, N> &v) {
    for (auto &x : v) is >> x;
    return is;
}
template <size_t N = 0, typename T>
istream& cin_tuple_impl(istream &is, T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        auto &x = std::get<N>(t);
        is >> x;
        cin_tuple_impl<N + 1>(is, t);
    }
    return is;
}
template <class... T>
istream &operator>>(istream &is, tuple<T...> &t) {
    return cin_tuple_impl(is, t);
}

template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << p.first << " " << p.second;
    return os;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template<typename T, size_t N>
ostream &operator<<(ostream &os, const array<T, N> &v) {
    size_t n = v.size();
    for (size_t i = 0; i < n; i++) {
        if (i) os << " ";
        os << v[i];
    }
    return os;
}
template <size_t N = 0, typename T>
ostream& cout_tuple_impl(ostream &os, const T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        if constexpr (N > 0) os << " ";
        const auto &x = std::get<N>(t);
        os << x;
        cout_tuple_impl<N + 1>(os, t);
    }
    return os;
}
template <class... T>
ostream &operator<<(ostream &os, const tuple<T...> &t) {
    return cout_tuple_impl(os, t);
}

void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
    cin >> t;
    in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
    cout << t;
    outr(u...);
}

void __attribute__((constructor)) _c() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);
}
} // namespace io

using io::in;
using io::out;
using io::outr;

using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;

#define rep1(a)          for(ll i = 0; i < a; i++)
#define rep2(i, a)       for(ll i = 0; i < a; i++)
#define rep3(i, a, b)    for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a)          for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a)       for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b)    for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
    T res = 0;
    for(auto &&a : v) res += a;
    return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
    if (v.empty()) return {};
    T cur = v.front();
    int cnt = 1;
    vector<pair<T,int>> res;
    for (int i = 1; i < (int)v.size(); i++) {
        if (cur == v[i]) cnt++;
        else {
            res.emplace_back(cur, cnt);
            cnt = 1; cur = v[i];
        }
    }
    res.emplace_back(cur, cnt);
    return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }

template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
    if (check_ok) assert(check(ok));
    while (abs(ok -  ng) > 1) {
        ll mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <typename F>
ll binary_search_real(F check, double ok, double ng, int iter = 60) {
    for (int _ = 0; _ < iter; _++) {
        double mid = (ok + ng) / 2;
        (check(mid) ? ok : ng) = mid;
    }
    return (ok + ng) / 2;
}

// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
    assert(b != 0);
    if (b < 0) a = -a, b = -b;
    return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
    assert(b > 0);
    ll c = a % b;
    return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
    ll q = div_floor(a,b);
    return {q, a - b*q};
}

#include "atcoder/modint.hpp"
using mint = atcoder::dynamic_modint<-1>;

const int dx[4] = {1,0,-1,0};
const int dy[4] = {0,1,0,-1};

bool memo[1<<25];
int fr[26][26];
bool is_red[25][25];
mint fact[27], finv[27], inv[27], p2[27];

mint com(int n, int k) {
    if(n < 0 or k < 0 or n < k) return 0;
    return fact[n] * finv[k] * finv[n-k];
}

int main() {
    int h,w,m; ll k; in(h,w,k,m);
    mint::set_mod(m);
    k %= (m-1);

    fact[0] = fact[1] = 1;
    finv[0] = finv[1] = 1;
    inv[1] = 1;
    rep(i,2,h*w+1) {
        fact[i] = fact[i-1] * i;
        inv[i] = m - inv[m%i] * (m/i);
        finv[i] = finv[i-1] * inv[i];
    }
    p2[0] = 1; p2[1] = (m+1)/2;
    rep(i,1,h*w+1) p2[i] = p2[i-1] * p2[1];

    int state = 0;

    auto dfs = [&] (auto dfs) -> void{
        if(memo[state]) return;
        memo[state] = true;

        int cr = 0;
        rep(i,h)rep(j,w) if(!get_bit(state, i*w+j)){
            bool valid = false;
            rep(d,4){
                int ni = i + dx[d];
                int nj = j + dy[d];
                if(ni < 0 or ni >= h or nj < 0 or nj >= w) continue;
                if(get_bit(state, ni*w+nj)) valid = true;
            }
            if(valid) {
                cr++;
                state = set_bit(state, i*w+j);
                dfs(dfs);
                state = reset_bit(state, i*w+j);
            }
        }
        fr[popcnt(state)][cr]++;
    };

    rep(i,h)rep(j,w){
        state = set_bit(state, i*w+j);
        dfs(dfs);
        state = reset_bit(state, i*w+j);
    }

    mint ans = 0;
    rep(cg,1,h*w+1) {
        mint pw = mint(cg).pow(k);
        rep(cr,h*w-cg+1) if(fr[cg][cr]) {
            rep(x,cg+1)rep(y,cr+1)rep(p,h*w-cr-cg+1){
                mint pre = com(cg,x) * com(cr,y) * com(h*w-cr-cg,p) * fact[x+y+p];
                pre *= finv[h*w] * fact[h*w-x-y-p];
                ans += pre * pw * inv[h*w-x-y-p+1] * p2[cr+cg] * fr[cg][cr];
            }
        }
    }
    out(ans.val());
}
0