結果

問題 No.2983 Christmas Color Grid (Advent Calender ver.)
ユーザー 👑 Nachia
提出日時 2024-12-08 17:04:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 409 ms / 3,340 ms
コード長 4,842 bytes
コンパイル時間 1,232 ms
コンパイル使用メモリ 91,776 KB
最終ジャッジ日時 2025-02-26 11:35:41
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 64
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
const i64 INF = 1001001001001001001;
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
using namespace std;
#include <atcoder/modint>
namespace nachia{
template<class Modint>
class Comb{
private:
std::vector<Modint> F;
std::vector<Modint> iF;
public:
void extend(int newN){
int prevN = (int)F.size() - 1;
if(prevN >= newN) return;
F.resize(newN+1);
iF.resize(newN+1);
for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i);
iF[newN] = F[newN].inv();
for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i);
}
Comb(int n = 1){
F.assign(2, Modint(1));
iF.assign(2, Modint(1));
extend(n);
}
Modint factorial(int n) const { return F[n]; }
Modint invFactorial(int n) const { return iF[n]; }
Modint invOf(int n) const { return iF[n] * F[n-1]; }
Modint comb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[r] * iF[n-r];
}
Modint invComb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[r] * F[n-r];
}
Modint perm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[n-r];
}
Modint invPerm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[n-r];
}
Modint operator()(int n, int r) const { return comb(n,r); }
};
} // namespace nachia
namespace nachia{
int Popcount(unsigned long long c) noexcept {
#ifdef __GNUC__
return __builtin_popcountll(c);
#else
c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3));
c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5));
c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17));
c = (c * (~0ull/257)) >> 56;
return c;
#endif
}
// please ensure x != 0
int MsbIndex(unsigned long long x) noexcept {
#ifdef __GNUC__
return 63 - __builtin_clzll(x);
#else
using u64 = unsigned long long;
int q = (x >> 32) ? 32 : 0;
auto m = x >> q;
constexpr u64 hi = 0x88888888;
constexpr u64 mi = 0x11111111;
m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35;
m = (((m | ~(hi - (x & ~hi))) & hi) * mi) >> 31;
q += (m & 0xf) << 2;
q += 0x3333333322221100 >> (((x >> q) & 0xf) << 2) & 0xf;
return q;
#endif
}
// please ensure x != 0
int LsbIndex(unsigned long long x) noexcept {
#ifdef __GNUC__
return __builtin_ctzll(x);
#else
return MsbIndex(x & -x);
#endif
}
}
using Modint = atcoder::modint;
void testcase(){
i64 H, W; cin >> H >> W;
i64 K, M; cin >> K >> M;
Modint::set_mod(M);
vector<i64> adj(H*W);
auto Idx = [&](i64 y, i64 x) -> i64 { return y * W + x; };
auto IdxBit = [&](i64 y, i64 x) -> i64 { return i64(1) << Idx(y,x); };
rep(y,H) rep(x,W-1) adj[Idx(y,x)] |= IdxBit(y,x+1);
rep(y,H) rep(x,W-1) adj[Idx(y,x+1)] |= IdxBit(y,x);
rep(y,H-1) rep(x,W) adj[Idx(y,x)] |= IdxBit(y+1,x);
rep(y,H-1) rep(x,W) adj[Idx(y+1,x)] |= IdxBit(y,x);
i64 N = H*W;
auto comb = nachia::Comb<Modint>(N+1);
vector<Modint> ipow2(N+1, 1);
rep(i,N) ipow2[i+1] = ipow2[i] / 2;
vector<vector<Modint>> F(N+1, vector<Modint>(N+1));
rep(i,N+1) rep(j,N+1) if(i+j <= N){
Modint t1 = Modint(i).pow(K);
//int k = N - i - j;
//for(i64 f=0; f<=k; f++){ //
// Modint t2 = t1 * comb(k, f);
// for(i64 e=0; e<=j; e++){ //
// Modint t3 = t2 * comb(j,e) * comb.invOf((k-f)+(j-e)+1);
// t3 *= comb.invComb(N, i+e+f) * ipow2[i+e];
// F[i][j] += t3;
// }
//}
F[i][j] += t1 * ipow2[i+j];
}
Modint ans = 0;
vector<bool> vis(1<<(N));
vector<i64> bfs;
rep(y,H) rep(x,W) bfs.push_back(IdxBit(y,x));
for(i64 v : bfs) vis[v] = 1;
rep(i,bfs.size()){
i64 v = bfs[i];
i64 w = 0;
rep(j,N) if((v>>j)&1) w |= adj[j];
w -= v & w;
int pcv = nachia::Popcount(v);
int pcw = nachia::Popcount(w);
//cout << "pcv = " << pcv << " , pcw = " << pcw << endl;
ans += F[pcv][pcw];
rep(j,N) if((w>>j)&1){
i64 nx = v | i64(1) << j;
if(vis[nx]) continue;
vis[nx] = 1;
bfs.push_back(nx);
}
}
Modint t = 0;
for(int i=1; i<=N; i++) t += comb.invOf(i);
ans *= t;
cout << ans.val() << '\n';
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
testcase();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0